著录项信息
专利名称 | 一种智能变量泵及液压控制系统 |
申请号 | CN201910027493.0 | 申请日期 | 2019-01-11 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2019-05-31 | 公开/公告号 | CN109826836A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | F15B11/08 | IPC分类号 | F;1;5;B;1;1;/;0;8;;;F;1;5;B;1;3;/;0;2;;;F;1;5;B;2;1;/;0;8查看分类表>
|
申请人 | 徐州工业职业技术学院 | 申请人地址 | 江苏省徐州市鼓楼区襄王路1号
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 徐州工业职业技术学院 | 当前权利人 | 徐州工业职业技术学院 |
发明人 | 李建松;余心明;孙金海;黎少辉;徐昆鹏;张文婷 |
代理机构 | 北京淮海知识产权代理事务所(普通合伙) | 代理人 | 刘振祥 |
摘要
一种智能变量泵及液压控制系统,变量泵,变量控制油缸的活塞杆一方面与泵本体的斜盘连接,另一方面与电磁比例阀的阀套连接;恒压控制油缸由恒压控制阀控制,并在系统超压时,通过活塞杆推动变量控制油缸动作,以减少泵本体的排油;流量控制阀、切换阀和恒压控制阀的P口及变量控制油缸的有杆腔均连接泵本体出油口;流量控制阀A口与切换阀的T口连接;切换阀的A口与电磁比例阀的P口连接,切换阀的B口与电磁比例阀的A口连通后再与变量控制油缸的无杆腔连通。系统,包括变量泵和多个由执行元件和负载敏感阀组成的执行单元。该变量泵能自动切换于容积和负载敏感控制模式,该系统能使多个执行元件间无干扰、高效率地工作,节能效果好。
1.一种智能变量泵,包括壳体(9),所述壳体(9)内安装有泵本体(1)、流量控制阀(8)、切换阀(7)、电磁比例阀(6)、变量控制油缸(41)和恒压控制阀(10);所述壳体(9)上设有通过油路连接到泵本体(1)的出油口的B口、通过油路连接到泵本体(1)进油口的S口、通过油路连接到流量控制阀(8)弹簧腔的X口和用于导出泄漏油液的L口;
其特征在于,还包括安装在壳体(9)内部的恒压控制油缸(42)和固定设置在壳体(9)内部的缸体(16);
所述变量控制油缸(41)包括活塞腔A(41c)、活塞A(41e)、活塞杆A(41d)、第一复位弹簧(31);活塞腔A(41c)左右方向延伸地开设在缸体(16)内部的左侧,活塞腔A(41c)的左端通过横向开设在缸体(16)左端的连通腔A(41f)与缸体(16)的左部外侧连通,活塞A(41e)滑动密封配合地装配在活塞腔A(41c)中,并将活塞腔A(41c)分隔为左侧的有杆腔A(41a)和右侧的无杆腔A(41b),有杆腔A(41a)和无杆腔A(41b)分别通过开设在缸体(16)上的油道a(201)和油道b(202)连通至缸体(16)的外部,活塞杆A(41d)滑动密封配合地穿设在连通腔A(41f)中,且其右端伸入到有杆腔A(41a)中并与活塞A(41e)的左端中心固定连接,其左端延伸到缸体(16)的左侧并与反馈杆(5)的一端固定连接;活塞杆A(41d)的左端还与连杆(41g)的一端铰接,连杆(41g)的另一端与泵本体(1)内的斜盘(2)的一个端部铰接,第一复位弹簧(31)位于有杆腔A(41a)内部,且套设在活塞杆A(41d)的外部;所述反馈杆(5)的另一端与所述电磁比例阀(6)的阀套连接,以驱动电磁比例阀(6)阀套相对于其阀芯的横向移动;
所述恒压控制油缸(42)包括活塞腔B(42c)、活塞B(42e)、活塞杆B(42d)、第二复位弹簧(32);活塞腔B(42c)左右方向延伸地开设在缸体(16)内部的右侧,活塞腔B(42c)与活塞腔A(41c)同轴心地设置,活塞腔B(42c)的左端通过横向开设在缸体(16)内部的连通腔B(42f)与活塞腔A(41c)的右端连通,活塞B(42e)滑动密封配合地装配在活塞腔B(42c)中,并将活塞腔B(42c)分隔为左侧的有杆腔B(42a)和右侧的无杆腔B(42b),有杆腔B(42a)和无杆腔B(42b)分别通过开设在缸体(16)上的油道d(204)和油道c(203)连通至缸体(16)的外部,活塞杆B(42d)滑动密封配合地穿设在连通腔B(42f)中,且其右端伸入到有杆腔B(42a)中并与活塞B(42e)的左端中心固定连接,其左端延伸到无杆腔A(41b)中;第二复位弹簧(32)位于有杆腔B(42a)内部,且套设在活塞杆B(42d)的外部;
流量控制阀(8)的P口、切换阀(7)的P口、恒压控制阀(10)的P口和油道a(201)均通过油路连接至泵本体(1)的出油口;
流量控制阀(8)的左位控制口通过油路连接至自身的P口,其A口与切换阀(7)的T口连接,其T口直接泄漏至壳体(9)内;
切换阀(7)的A口与电磁比例阀(6)的P口连接,其B口与电磁比例阀(6)的A口连通后与油道b(202)连通;
电磁比例阀(6)的T口直接泄漏至壳体(9)内;
恒压控制阀(10)的左位控制口通过油路连接至自身的P口,其T口直接泄漏至壳体(9)内,其A口通过油路与油道c(203)连通;
电磁比例阀(6)为两位三通电磁比例换向阀,电磁铁的电流大于等于最大设定值时,其工作在左位,其P口封闭,A口与T口之间的油路连通;电磁铁的电流小于等于最小设定值时,其工作在右位,其P口与A口之间的油路连通,其T口封闭;电磁铁的电流大于最小设定值且小于最大设定值时,其工作在左位和右位之间,其P口同时与T口和A口连通。
2.根据权利要求1所述的一种智能变量泵,其特征在于,切换阀(7)为两位四通电磁换向阀,其电磁铁得电时,工作在左位,其P口与A口之间的油路连通,其T口和B口之间的油路断开;其电磁铁失电时,工作在右位,其P口与A口之间的油路断开,其T口和B口之间的油路连通。
3.根据权利要求1或2所述的一种智能变量泵,其特征在于,所述活塞腔B的右端通过横向开设在缸体(16)右端的连通腔C(17)与缸体(16)的右部外侧连接,连通腔C(17)内设置有内螺纹,并通过螺纹配合装配有限位螺钉(210),限位螺钉(210)与连通腔C(17)之间密封配合。
4.一种液压控制系统,包括变量泵(15)、控制手柄(100)、控制器(14)和至少两个负载执行单元,所述负载执行单元由负载敏感阀(12)和与负载敏感阀(12)出油口连接的液压执行元件(11)组成,所述控制器(14)分别和控制手柄(100)及负载执行单元中的负载敏感阀(12)连接;
其特征在于,所述变量泵(15)采用权利要求1至3任一项所述的智能变量泵,变量泵(15)的B口通过管路与负载执行单元中的负载敏感阀(12)的进油口连接,两个负载执行单元中的负载敏感阀(12)的出油口分别连接梭阀(13)的两个进油口,梭阀(13)的出油口通过油路连接至变量泵(15)的X口,变量泵(15)的S口和L口均通过油路连接到油箱;所述控制器(14)还分别与变量泵(15)中的电磁比例阀(6)和切换阀(7)连接。
一种智能变量泵及液压控制系统\n技术领域\n[0001] 本发明涉及液压控制技术领域,具体涉及一种智能变量泵及液压控制系统。\n背景技术\n[0002] 随着装备制造技术的发展,对液压系统在轻量化、能量利用效率、多执行元件复合操作等方面的要求越来越高。在现有的液压系统中,变量泵容积控制系统和负载敏感节流控制系统由于各自的优势均得到了广泛的应用。\n[0003] 典型的变量泵容积控制系统中,电比例排量泵将油箱中液压油通过电磁换向阀供给液压缸。其中电磁换向阀受控制器的控制进行开关动作。液压缸不需要动作时,控制器将电磁换向阀关闭,同时将电比例排量泵的排量变为零。液压缸需要动作时,控制器将电磁换向阀打开,同时按系统需要将电比例排量泵的排量调整至合适大小。电比例排量泵的排量变化就控制了液压缸的速度大小。因电磁换向阀仅起到控制运动与否和方向,而没有节流作用,所以,容积控制系统中从泵的出口到执行元件的压力损失较小,系统的能量利用效率较高。但是,变量泵容积控制系统存在着一个缺点,在任一时刻,一个液压泵只能对应一个工作的执行元件,换言之,对于多个执行元件复合动作,每一个执行元件都需要一个单独的液压泵进行控制。这样,在系统中存在多个执行元件时,需要配置多个液压泵,增加了设计和制造成本。\n[0004] 典型的负载敏感节流控制系统中,负载敏感泵将油箱中液压油分别送给多个负载敏感阀。每个负载敏感阀单独控制一个液压缸。多个液压缸之间通过梭阀来对最大负载压力信号进行比较,并将较大的一个信号反馈给负载敏感泵。控制器用于根据系统需要控制负载敏感阀的开度和方向。每个负载敏感泵内置有流量控制阀,流量控制阀可以调节负载敏感泵的压力仅比负载高出一个设定好的恒定值。由此,相对常规定量泵溢流阀回路而言,负载敏感系统可以减少能量浪费。负载敏感系统中使用的负载敏感阀,可以像常规的比例阀一样根据控制器的电信号控制油液方向和阀口的开度。同时,负载敏感阀内部集成了用于使对应的阀口前后压差恒定的压力补偿阀。此恒定的压差用于保证阀口的通流量只和阀口通流面积成正比,且此压差要小于负载敏感泵内部的流量控制阀设定的压差。这样,负载敏感系统就具备了各个执行元件的动作不受各自不同负载大小的影响。\n[0005] 事实上,液压系统并不是一直工作在多个执行机构同时工作的工况下。很多时候,液压系统中仅有一个执行机构在工作。当系统中只有一个执行机构运动时,就不存在多个执行元件相互影响速度的问题。然而,此时负载敏感阀内的压力补偿阀仍然起作用,以保持换向阀前后的压差为一恒定值。这时,负载敏感泵内置的流量控制阀也使泵出口的压力和负载保持一个恒定值。在这种情况下,负载敏感阀内置的压力补偿阀和负载敏感泵内置的流量控制阀就构成了双重补偿,这导致了严重的节流损失,换言之,压力补偿阀成了多余的浪费能量的元件。\n发明内容\n[0006] 针对上述现有技术存在的问题,本发明提供一种智能变量泵,该变量泵既能为容积控制液压系统进行供能,又能为负载敏感控制液压系统进行供能,其能在负载敏感控制液压系统中使用时避免单执行元件动作情况下内置的流量控制阀所引起的节流损失问题,从而提高系统能量利用效率;同时,该变量泵具有超压保护功能,能提高使用过程中的安全系数。\n[0007] 为了实现上述目的,本发明提供了一种智能变量泵,包括壳体,所述壳体内安装有泵本体、流量控制阀、切换阀、电磁比例阀、变量控制油缸、恒压控制阀和恒压控制油缸;壳体内还固定设置有缸体;所述壳体上设有通过油路连接到泵本体的出油口的B口、通过油路连接到泵本体进油口的S口、通过油路连接到流量控制阀弹簧腔的X口和用于导出泄漏油液的L口;\n[0008] 所述变量控制油缸包括活塞腔A、活塞A、活塞杆A、第一复位弹簧;活塞腔A左右方向延伸地开设在缸体内部的左侧,活塞腔A的左端通过横向开设在缸体左端的连通腔A与缸体的左部外侧连通,活塞A滑动密封配合地装配在活塞腔A中,并将活塞腔A分隔为左侧的有杆腔A和右侧的无杆腔A,有杆腔A和无杆腔A分别通过开设在缸体上的油道a和油道b连通至缸体的外部,活塞杆A滑动密封配合地穿设在连通腔A中,且其右端伸入到有杆腔A中并与活塞A的左端中心固定连接,其左端延伸到缸体的左侧并与反馈杆的一端固定连接;活塞杆A的左端还与连杆的一端铰接,连杆的另一端与泵本体内的斜盘的一个端部铰接,第一复位弹簧位于有杆腔A内部,且套设在活塞杆A的外部;所述反馈杆的另一端与所述电磁比例阀的阀套连接,以驱动电磁比例阀阀套相对于其阀芯的横向移动;\n[0009] 所述恒压控制油缸包括活塞腔B、活塞B、活塞杆B、第二复位弹簧;活塞腔B左右方向延伸地开设在缸体内部的右侧,活塞腔B与活塞腔A同轴心地设置,活塞腔B的左端通过横向开设在缸体内部的连通腔B与活塞腔A的右端连通,活塞B滑动密封配合地装配在活塞腔B中,并将活塞腔B分隔为左侧的有杆腔B和右侧的无杆腔B,有杆腔B和无杆腔B分别通过开设在缸体上的油道d和油道c连通至缸体的外部,活塞杆B滑动密封配合地穿设在连通腔B中,且其右端伸入到有杆腔B中并与活塞B的左端中心固定连接,其左端延伸到无杆腔A中;第二复位弹簧位于有杆腔B内部,且套设在活塞杆B的外部;\n[0010] 流量控制阀的P口、切换阀的P口、恒压控制阀的P口和油道a均通过油路连接至泵本体的出油口;\n[0011] 流量控制阀的左位控制口通过油路连接至自身的P口,其A口与切换阀的T口连接,其T口直接泄漏至壳体内;\n[0012] 切换阀的A口与电磁比例阀的P口连接,其B口与电磁比例阀的A口连通后与油道b连通;\n[0013] 电磁比例阀的T口直接泄漏至壳体内;\n[0014] 恒压控制阀的左位控制口通过油路连接至自身的P口,其T口直接泄漏至壳体内,其A口通过油路与油道c连通。\n[0015] 作为一种优选,切换阀为两位四通电磁换向阀,其电磁铁得电时,工作在左位,其P口与A口之间的油路连通,其T口和B口之间的油路断开;其电磁铁失电时,工作在右位,其P口与A口之间的油路断开,其T口和B口之间的油路连通。\n[0016] 作为一种优选,电磁比例阀为两位三通电磁比例换向阀,当电磁铁的电流大于等于最大设定值时,其工作在左位,其P口封闭,A口与T口之间的油路连通;当电磁铁的电流小于等于最小设定值时,其工作在右位,其P口与A口之间的油路连通,其T口封闭;电磁铁的电流大于最小设定值且小于最大设定值时,其P口同时与T口和A口连通。\n[0017] 进一步,为了便于实现对活塞腔B的右限位,所述活塞腔B的右端通过横向开设在缸体右端的连通腔C与缸体的右部外侧连接,连通腔C内设置有内螺纹,并通过螺纹配合装配有限位螺钉,限位螺钉与连通腔C之间密封配合。\n[0018] 在该技术方案中,该变量泵在应用于具有多个执行元件的液压系统中时,能根据执行元件为单个或多个而自动地切换于容积控制模式和负载敏感控制模式,从而可以使液压系统的效率更高,也更加节能。当其应用于具有多个执行元件的液压系统中时,能保证多个执行机构之间的动作互不干扰,而且还能在负载敏感控制模式下实现节能的目的。恒压控制油缸能在超压后通过活塞杆B作用于活塞A的方式,减少泵本体的排油量,以达到超压保护的目的,从而能提高使用过程中的安全系数。\n[0019] 本发明还提供一种液压控制系统,该系统能在液压系统中仅有一个执行元件时具有更高的效率,能更有效地节省能耗,还能在负载敏感控制模式时,保证多个执行元件的相互不干扰。\n[0020] 为了实现上述目的,本发明还提供了一种液压控制系统,包括变量泵、控制手柄、控制器和至少两个负载执行单元,所述负载执行单元由负载敏感阀和与负载敏感阀出油口连接的液压执行元件组成,所述控制器分别和控制手柄及负载执行单元中的负载敏感阀连接;\n[0021] 变量泵的B口通过管路与负载执行单元中的负载敏感阀的进油口连接,两个负载执行单元中的负载敏感阀的出油口分别连接梭阀的两个进油口,梭阀的出油口通过油路连接至变量泵的X口,变量泵的S口和L口均通过油路连接到油箱;所述控制器还分别与变量泵中的电磁比例阀和切换阀连接。\n[0022] 在该技术方案中,能在系统只有一个执行元件工作时,使变量泵自动切换于容积控制模式下,将负载敏感阀开至最大开口,既能通过电磁比例阀来控制泵的排量,从而控制系统的流量,避免了流量控制阀调节过程中的节流损失问题,又能使工作过程中的能量利用效率更高,执行元件的反应更灵敏,工作速度更快。当系统中有多个执行元件同时工作时,能使变量泵自动切换于负载敏感控制模式,以利用负载反馈的压力信号来进行泵排量的自动调节,能按照系统的需要提供相应的流量,保证多个执行机构之间的动作互不干扰。\n同时,该系统工作在容积控制模式和负载敏感控制模式是自动进行的。因此,该液压系统无论工作在容积控制模式,还是工作在负载敏感控制模式下,均能使系统的效率更高,更节能。\n附图说明\n[0023] 图1是本发明中变量泵的液压原理图;\n[0024] 图2是本发明中的基于变量泵的液压控制系统的液压原理图;\n[0025] 图3为本发明中的电磁比例阀在平衡位置时的详细原理图;\n[0026] 图4为本发明中的电磁比例阀的阀口通流面积变化示意图;\n[0027] 图5为本发明中的液压控制系统工作在容积控制模式下处于平衡位置时的液压原理图;\n[0028] 图6为本发明中的液压控制系统工作在容积控制模式下泵本体排量变大的液压原理图;\n[0029] 图7为本发明中的液压控制系统工作在容积控制模式下泵本体排量变小的液压原理图;\n[0030] 图8为本发明中的液压控制系统工作在负载敏感控制模式下处于平衡位置时的液压原理图;\n[0031] 图9为本发明中的液压控制系统工作在负载敏感控制模式下泵本体排量变大的液压原理图;\n[0032] 图10为本发明中的液压控制系统工作在负载敏感控制模式下泵本体排量变小的液压原理图;\n[0033] 图11为本发明中的液压控制系统工作在任意控制模式下,系统压力超过恒压控制阀设定压力时的液压原理图;\n[0034] 图12为本发明中的变量控制油缸和恒压控制油缸在缸体内的结构示意图。\n[0035] 图中:1、泵本体,2、斜盘,31、第一复位弹簧,32、第二复位弹簧,41、变量控制油缸,\n41a、有杆腔A,41b、无杆腔A,41c、活塞腔A,41d、活塞杆A,41e、活塞A,41f、连通腔A,41g、连杆,42、恒压控制油缸,42a、有杆腔B,42b、无杆腔B,42c、活塞腔B,42d、活塞杆B,42e、活塞B,\n42f、连通腔B,5、反馈杆,6、电磁比例阀,7、切换阀,8、流量控制阀,9、壳体,10、恒压控制阀,\n11、液压执行元件,12、负载敏感阀,13、梭阀,14、控制器,15、变量泵,16、缸体,17、连通腔C,\n100、控制手柄,201、油道a,202、油道b,203、油道c,204、油道d,210、限位螺钉。\n具体实施方式\n[0036] 下面结合附图对本发明作进一步说明。\n[0037] 如图1所示,本发明提供了一种智能变量泵,包括壳体9,所述壳体9内安装有泵本体1、流量控制阀8、切换阀7、电磁比例阀6、变量控制油缸41、恒压控制阀10和恒压控制油缸\n42;壳体9内还固定设置有缸体16;所述壳体9上设有通过油路连接到泵本体1的出油口的B口、通过油路连接到泵本体1进油口的S口、通过油路连接到流量控制阀8弹簧腔的X口和用于导出泄漏油液的L口,可供导出的油液有泵本体1的泄漏油、变量控制油缸41和恒压控制油缸42的泄漏油、流量控制阀8的T口排油、电磁比例阀6的T口排油和恒压控制阀10的T口排油等;\n[0038] 图12给出了变量控制油缸41和恒压控制油缸42在缸体16的结构示意图,变量控制油缸41和恒压控制油缸42沿同一轴线布置在缸体16内。\n[0039] 所述变量控制油缸41包括活塞腔A41c、活塞A41e、活塞杆A41d、第一复位弹簧31;\n活塞腔A41c左右方向延伸地开设在缸体16内部的左侧,活塞腔A41c的左端通过横向开设在缸体16左端的连通腔A41f与缸体16的左部外侧连通,活塞A41e滑动密封配合地装配在活塞腔A41c中,并将活塞腔A41c分隔为左侧的有杆腔A41a和右侧的无杆腔A41b,有杆腔A41a和无杆腔A41b分别通过开设在缸体16上的油道a201和油道b202连通至缸体16的外部,活塞杆A41d滑动密封配合地穿设在连通腔A41f中,且其右端伸入到有杆腔A41a中并与活塞A41e的左端中心固定连接,其左端延伸到缸体16的左侧并与反馈杆5的一端固定连接;活塞杆A41d的左端还与连杆41g的一端铰接,连杆41g的另一端与泵本体1内的斜盘2的一个端部铰接,第一复位弹簧31位于有杆腔A41a内部,且套设在活塞杆A41d的外部;所述反馈杆5的另一端与所述电磁比例阀6的阀套连接,以驱动电磁比例阀6阀套相对于其阀芯的横向移动;\n[0040] 所述恒压控制油缸42包括活塞腔B42c、活塞B42e、活塞杆B42d、第二复位弹簧32;\n活塞腔B42c左右方向延伸地开设在缸体16内部的右侧,活塞腔B42c与活塞腔A41c同轴心地设置,活塞腔B42c的左端通过横向开设在缸体16内部的连通腔B42f与活塞腔A41c的右端连通,活塞B42e滑动密封配合地装配在活塞腔B42c中,并将活塞腔B42c分隔为左侧的有杆腔B42a和右侧的无杆腔B42b,有杆腔B42a和无杆腔B42b分别通过开设在缸体16上的油道d204和油道c203连通至缸体16的外部,活塞杆B42d滑动密封配合地穿设在连通腔B42f中,且其右端伸入到有杆腔B42a中并与活塞B42e的左端中心固定连接,其左端延伸到无杆腔A41b中;第二复位弹簧32位于有杆腔B42a内部,且套设在活塞杆B42d的外部;\n[0041] 流量控制阀8的P口、切换阀7的P口、恒压控制阀10的P口和油道a201均通过油路连接至泵本体1的出油口;\n[0042] 流量控制阀8的左位控制口通过油路连接至自身的P口,其A口与切换阀7的T口连接,其T口直接泄漏至壳体9内;\n[0043] 切换阀7的A口与电磁比例阀6的P口连接,其B口与电磁比例阀6的A口连通后与油道b202连通;\n[0044] 电磁比例阀6的T口直接泄漏至壳体9内;\n[0045] 恒压控制阀10的左位控制口通过油路连接至自身的P口,其T口直接泄漏至壳体9内,其A口通过油路与油道c203连通。恒压控制阀10能对变量泵起到超压保护的目的,以保证使用过程中的安全。\n[0046] 切换阀7为两位四通电磁换向阀,其电磁铁得电时,工作在左位,其P口与A口之间的油路连通,其T口和B口之间的油路断开;其电磁铁失电时,工作在右位,其P口与A口之间的油路断开,其T口和B口之间的油路连通。\n[0047] 电磁比例阀6为两位三通电磁比例换向阀,电磁铁的电流大于等于最大设定值时,其工作在左位,其P口封闭,A口与T口之间的油路连通;电磁铁的电流小于等于最小设定值时,其工作在右位,其P口与A口之间的油路连通,其T口封闭;电磁铁的电流大于最小设定值且小于最大设定值时,其P口同时与T口和A口连通,如图3和图4所示。\n[0048] 为了便于实现对活塞腔B的右限位,所述活塞腔B的右端通过横向开设在缸体16右端的连通腔C17与缸体16的右部外侧连接,连通腔C17内设置有内螺纹,并通过螺纹配合装配有限位螺钉210,限位螺钉210与连通腔C17之间密封配合。\n[0049] 一种液压控制系统,包括变量泵15、控制手柄100、控制器14和至少两个负载执行单元,所述负载执行单元由负载敏感阀12和与负载敏感阀12出油口连接的液压执行元件11组成,所述控制器14分别和控制手柄100及负载执行单元中的负载敏感阀12连接;变量泵15的B口通过管路与负载执行单元中的负载敏感阀12的进油口连接,两个负载执行单元中的负载敏感阀12的出油口分别连接梭阀13的两个进油口,梭阀13的出油口通过油路连接至变量泵15的X口,变量泵15的S口和L口均通过油路连接到油箱,L口与油箱连接,可将壳体9内部存储的油液导出到油箱;所述控制器14还分别与变量泵15中的电磁比例阀6和切换阀7连接。图2中的变量泵15内部结构为本实施例中的变量泵的结构,为了方便起见,将变量泵15的内部结构进行了省略。\n[0050] 下面结合附图对本发明的工作原理做进一步说明。\n[0051] 在系统压力达不到恒压控制阀10的设定压力时,恒压控制阀10在其右位弹簧的作用下始终工作在右位,其A口和T口处于接通状态,P口处于关断状态,活塞B42e在第二复位弹簧32的作用下始终位于无杆腔B42b的右端,活塞杆B42d的左端不进入无杆腔A41a中,此时,相当于只有变量控制油缸41存在。\n[0052] 控制器14检测各个负载执行单元中的控制手柄100的动作情况。当操作人员操作控制手柄100时,相应的控制手柄100会发出电信号给控制器14,控制器14根据收到的动作电信号数量来判断是有一个控制手柄100动作还是有多个控制手柄100动作,来判别液压系统应该工作在容积控制模式还是应该工作在负载敏感控制模式。当仅有一个控制手柄100发出动作电信号给控制器14时,控制器14控制系统工作在容积控制模式,当有多个控制手柄100发出动作电信号给控制器14时,控制器14控制系统工作在负载敏感控制模式。\n[0053] 一、当系统工作在容积控制模式(电比例控制模式)时,即系统中仅有一个执行机构工作时,泵的排量大小与电磁比例阀6的控制电流成正比。如图5所示,图中省略了其他没有动作的执行元件及相关回路部分。控制器14使切换阀7的电磁铁得电,同时给负载敏感阀\n12以最大控制电流,该阀阀口全开。此时,负载敏感阀12内置的压力补偿阀亦全开,故整个负载敏感阀12仅起方向控制作用,控制液压执行元件(图中为液压缸)11的伸缩动作,无节流作用,故压力损失很小。液压执行元件(液压缸)11的动作快慢仅取决于通过负载敏感阀\n12的流量,也就是泵的输出流量,即泵的排量大小。泵的排量大小由控制器14输出给电磁比例阀6的电流决定。系统稳定工作时,电磁比例阀6稳定工作在平衡位置下。具体变量过程如下:\n[0054] 1)排量变大的变化过程,如图4至图6所示。电磁比例阀6得到电流信号逐渐变大,电磁铁的力增大,阀芯克服弹簧的弹力被向右推动,电磁比例阀6逐渐工作在左位,阀的P口与A口的通流面积逐渐变小,T口与A口的通流面积变大。变量控制油缸41的无杆腔A41b中的部分油液通过电磁比例阀6的A口和T口,流入泵的壳体9中,最后,经L口回油箱。变量控制油缸41在左侧的有杆腔41a内油液压力和第一复位弹簧31的联合作用下向右移动,泵的排量逐渐变大。与此同时,反馈杆5在变量控制油缸41的带动下也向右移动,从而拖动电磁比例阀6的阀套向右运动,故,电磁比例阀6的A口到T口逐渐关小,直到变量控制油缸41稳定在一个固定位置,电磁比例阀6达到新的平衡位置。此时,泵的排量也就稳定在了与控制电流相对应的某个位置上。这就是泵的排量随着控制信号增大而增大的过程。\n[0055] 2)排量变小的变化过程,如图4、图5和图7所示。当控制器14输出给电磁比例阀6的电流减小时,电磁铁的力减小,电磁比例阀6的阀芯逐渐向左移,其工作接近右位,其P口与A口的通流面积逐渐变大,A口与T口的通流面积逐渐变小。来自泵本体1出口的控制油液经切换阀7的P口至A口,再经电磁比例阀6的P口至A口,进入变量控制油缸41右侧的无杆腔A41b内。变量控制油缸41在右侧无杆腔A41b内油液压力作用下,克服左侧的有杆腔A41a内油液压力和第一复位弹簧31的作用而向左移动,泵的排量逐渐减小。与此同时,反馈杆5在变量控制油缸41的带动下也向左移动,从而拖动电磁比例阀6的阀套向左运动,故,电磁比例阀6的P口到A口的通流面积又变小,直到变量控制油缸41稳定在一个固定位置,电磁比例阀6达到新的平衡位置。此时,泵的排量在此稳定在和控制电流对应的某个位置上。这就是泵的排量随着控制信号减小而减小的过程。\n[0056] 二、负载敏感节流控制模式:当液压系统中有多个执行元件工作时,如图8所示,图\n8中仅画出了两个液压缸作为示意。控制器14断开对电磁比例阀6和切换阀7的控制电流,电磁比例阀6工作在右位。切换阀7在其右侧弹簧的作用下始终工作在右位,其P口与A口断开,B口与T口接通。该模式下负载的压力信号通过梭阀13比较并得出最高压力信号,并通过泵的壳体9上的X口反馈作用在流量控制阀8的右侧。系统稳定工作时,泵出口的压力与流量控制阀8右侧的最高负载压力和弹簧力相平衡,流量控制阀8稳定工作平衡在中间位置下,泵的排量大小与系统中的负载敏感阀12的开口总面积成正比。此时系统为负载敏感节流控制,具体的变量过程如下:\n[0057] A、排量变大的变化过程,如图8和图9所示。当系统中一个或多个负载敏感阀12的控制信号变大时,其开口面积增大。此时负载并未发生变化,故流量控制阀8右侧的作用力没有发生改变。阀的开口面积增大而泵的流量没有发生变化时,故其压力损失变小,故泵出口的压力降低。流量控制阀8的阀芯在右侧合力(弹簧力和反馈的最高负载压力)的作用下向左运动,流量控制阀8逐渐工作在右位,其P口与A口逐渐关闭,A口与T口的通流面积逐渐变大。这样,变量控制油缸41右侧的无杆腔41b中的部分油液通过切换阀7的B到T口,再通过流量控制阀8的A到T口,流入泵的壳体9,最后,经L口回油箱。变量控制油缸41在左侧的有杆腔41a内油液压力和第一复位弹簧31的联合作用下向右移动,泵的排量逐渐变大。故,泵输出的流量增大,通过负载敏感阀12的流量增大,其阀口的压力损失也增大,泵出口的压力逐渐升高。流量控制阀8的阀芯受力逐渐平衡,朝着平衡位置移动,其A到T口的通流面积逐渐关小,P口与A口的通流面积逐渐恢复,直到变量控制油缸41再次稳定在一个固定位置,同时流量控制阀8也达到平衡位置。此时,泵的排量也就稳定了。这是泵的排量随着控制信号增大而增大的过程。\n[0058] B、排量变小的变化过程,如图8和图10所示。当系统中一个或多个负载敏感阀的控制信号变小时,其开口面积减小,需要泵减小流量(排量)。此时负载并未发生变化,故流量控制阀8右侧的作用力没有发生改变。阀的开口面积减小而泵的流量没有发生变化,故其压力损失增大,故泵出口的压力升高。流量控制阀8的阀芯在左侧泵的出口压力的作用下向右运动,流量控制阀8逐渐工作在左位,其A口与P口的通流面积逐渐变大,T口与A口趋于关闭。\n同时,来自泵本体1的高压油液通过流量控制阀8的P到A口流出,经过切换阀7的T口到B口,进入变量控制油缸41右侧的无杆腔A41b内。变量控制油缸41在右侧无杆腔A41b内油液压力作用下,克服左侧的有杆腔A41a内油液压力和第一复位弹簧31的作用而向左移动,泵的排量逐渐减小。故,泵输出的流量减小,通过负载敏感阀的流量减小,其阀口的压力损失也减小,泵出口的压力逐渐降低。流量控制阀8的阀芯受力逐渐平衡,朝着平衡位置移动,直到变量控制油缸4在此稳定在一个固定位置,同时流量控制阀8达到新的平衡位置。此时,泵的排量也就稳定了。这是泵的排量随着控制信号减小而减小的过程。\n[0059] 在上述的任何控制模式下,当泵本体1出口的压力达到恒压控制阀10的设定压力时,恒压控制阀10能够控制泵减小自身排量,实现保护的作用。结合图11,当泵出口压力达到恒压控制阀10的设定时,泵出口的油液直接作用于恒压控制阀10的左位控制口,进而推动其阀芯克服右侧弹簧的弹力而工作在左位。这时,恒压控制阀10的P口与A口接通,A口与T口断开,泵出口的高压油经过经恒压控制阀10的P口和A口,进入恒压控制油缸42右侧的无杆腔B42b内,推动恒压控制油缸42中的活塞B42c向左移动,活塞杆B42d进入无杆腔A41b中并克服变量控制油缸41左侧的有杆腔A41a内油液压力、第一复位弹簧31和第二复位弹簧32的力而将活塞A41e向左部推动,进而通过活塞杆A41d作用于斜盘2,使泵本体1的排量逐渐减小,防止压力继续升高。作为一种优选,活塞B42e的面积大于活塞A41e的面积,以保证活塞B42e具有较强的推力,可以在任何情况下,均能通过活塞杆B42d推动活塞A41e。极端情况下,泵本体1的排量可以减小至接近零,泵本体1不排出油液,仅有少量油液用于变量控制和维持泄漏。\n[0060] 当压力降低至低于恒压控制阀10的设定压力时,恒压控制阀10复位,恒压控制油缸42在第二复位弹簧32的作用下也复位,系统恢复到上述的容积控制模式或负载敏感控制模式下。
法律信息
- 2022-11-11
专利权的转移
登记生效日: 2022.10.31
专利权人由合肥九州龙腾科技成果转化有限公司变更为中建三局科创产业发展有限公司
地址由230000 安徽省合肥市蜀山经济开发区井岗路电商园一期2号楼203变更为518000 广东省深圳市龙岗区龙城街道尚景社区龙城大道85号万科时代广场3B写字楼3301
- 2022-07-08
专利权的转移
登记生效日: 2022.06.27
专利权人由徐州工业职业技术学院变更为合肥九州龙腾科技成果转化有限公司
地址由221000 江苏省徐州市鼓楼区襄王路1号变更为230000 安徽省合肥市蜀山经济开发区井岗路电商园一期2号楼203
- 2020-07-24
- 2019-06-25
实质审查的生效
IPC(主分类): F15B 11/08
专利申请号: 201910027493.0
申请日: 2019.01.11
- 2019-05-31
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2011-12-21
|
2011-06-16
| | |
2
| |
2009-10-07
|
2009-05-05
| | |
3
| |
2016-11-09
|
2016-08-09
| | |
4
| | 暂无 |
2015-11-16
| | |
5
| |
1999-09-01
|
1999-02-13
| | |
6
| |
2015-03-18
|
2014-08-15
| | |
7
| | 暂无 |
2016-08-31
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |