著录项信息
专利名称 | 身份识别和鉴定方法 |
申请号 | CN03122012.6 | 申请日期 | 2003-04-21 |
法律状态 | 权利终止 | 申报国家 | 中国 |
公开/公告日 | 2004-10-27 | 公开/公告号 | CN1540568 |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G06K9/00 | IPC分类号 | G;0;6;K;9;/;0;0;;;G;0;6;K;9;/;3;6;;;G;0;6;K;9;/;4;6查看分类表>
|
申请人 | 香港中文大学 | 申请人地址 | 香港新界
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 香港中文大学 | 当前权利人 | 香港中文大学 |
发明人 | 张元亭;张妍;顾颖颖 |
代理机构 | 北京英赛嘉华知识产权代理有限责任公司 | 代理人 | 余朦;陈宇萱 |
摘要
本发明涉及一种新的基于人体生物特征信息的身份鉴定方法,属于生物特征识别和鉴定领域。该方法提出将光电体积变化信号(PPG)应用于身份鉴定系统,通过提取鉴定对象的生物特征信号并且据此生成该生物特征信号的特征向量,与一预先存储的数据库中该鉴定者的特征模板进行模式匹配,从而依据匹配结果做出鉴定结论。该方法是一种无创身份鉴定方法,易于被人们接受。该方法能够有效地与其他生物特征技术相结合,实现多生物信息身份识别和鉴定,提高鉴定系统的识别性能。
1.一种基于光电体积信号的身份识别和鉴定方法,包括以下步骤:
a)获取被鉴定者的光电体积信号波形;
b)根据所获得的光电体积信号波形提取光电体积信号的生物特征;
c)根据所提取的光电体积信号的生物特征计算光电体积信号的特征 参数;
d)根据所述光电体积信号特征参数生成被鉴定者的光电体积信号特 征向量;
e)将被鉴定者光电体积信号特征向量与一预先生成的数据库中该被 鉴定者的光电体积信号特征模板之间进行模式匹配;
f)当匹配超过一预设的门限值时,判断被鉴定者的身份合格。
2.根据权利要求1所述的方法,其中在步骤(a)中进一步包括对所 获取的光电体积信号进行预处理的步骤。
3.根据权利要求2所述的方法,其中对所获取的光电体积信号进行 预处理的步骤包括将光电体积信号转换为数字信号并去除高频噪声和低 频噪声。
4.根据权利要求1所述的方法,其中所述的光电体积信号波形的生 物特征包括光电体积波形起始点,光电体积信号波形的顶点和谷点,所 述顶点为每个所述光电体积信号波形所包含的局部极大值的位置,而所 述谷点为每个所述光电体积信号波形的第一个顶点前第一个局部极小值 的位置。
5.根据权利要求4所述的方法,所述的光电体积信号生物特征的提 取包括:
a)检测所述光电体积信号起始点;
b)检测所述光电体积信号顶点和谷点。
6.根据权利要求5所述的方法,其中检测所述的光电体积信号顶点 和谷点的步骤包括:
a)对每一个光电体积波形应用十阶曲线拟合;
b)对曲线拟合后的结果求一阶导数。
7.根据权利要求1所述的方法,其中所述的光电体积信号的特征参 数包括上升斜率k1、下降斜率k2、时间间隔t1、时间间隔t2和顶点个数 N,其中,所述的上升斜率k1定义为每个光电体积信号波形的谷点到其 第一个顶点之间的斜率;下降斜率k2定义为每个光电体积信号波形的最 后一个顶点到其后一个光电体积信号波形谷点之间的斜率;时间间隔t1 定义为每个光电体积信号波形的谷点到其第一个顶点之间的时间间隔; 时间间隔t2定义为每个光电体积信号波形的第一个顶点到其后一个光电 体积信号波形的谷点之间的时间间隔;以及顶点个数N定义为每个光电 体积信号波形上局部极大值的个数。
8.根据权利要求7所述的方法,其中获得所述的光电体积信号各特 征参数的步骤为:
a)一阶曲线拟合应用于每一个光电体积信号波形的谷点到其 第一个顶点之间的数据,计算所述上升斜率k1;
b)一阶曲线拟合应用于每一个光电体积信号波形的最后一个 顶点到其后一个光电体积信号波形谷点之间的数据,计算所述下降斜率 k2;
c)分别对所有的k1和k2求平均值;
d)每个光电体积信号波形的第一个顶点位置减去该光电体积 信号波形的谷点位置来计算特征参数时间间隔t1;
e)每个光电体积信号波形的后一个波形谷点位置减去该光电 体积信号波形的第一个顶点位置来计算特征参数时间间隔t2;
f)一阶导数应用于每个光电体积信号波形的谷点和后一个光 电体积信号波形的谷点之间的数据来计算特征参数顶点个数N。
9.根据权利要求1所述的方法,其中在所述的步骤c)中,提取两种 或两种以上的生物特征信息,并产生相应于上述两种或两种以上的特征 信息的联合特征向量。
10.根据权利要求9所述的方法,其中,所述提取两种或两种以上的 生物特征信息包括提取光电体积信号和指纹图像生物特征信息。
技术领域\n本发明涉及一种身份识别和鉴定方法,特别是涉及一种基于人体生 物特征信息的身份识别和鉴定方法,其通过提取鉴定对象的生物特征信 号并且据此生成该生物特征信号的特征向量,与一预先存储的数据库中 该鉴定者的特征模板进行模式匹配,从而依据匹配结果做出鉴定结论。\n背景技术\n人们对人体生物学特征或行为特性加以研究以使之应用于身份识别 和鉴定领域。目前广泛应用的是利用人脸、指纹、声音,虹膜、唇的运 动、步态、EEG、ECG等进行身份鉴别。但是,现有的这些技术有着各 自的缺陷。例如,指纹可以在胶乳中隐去,人脸可以通过照片作假,声 音可以被模仿,因此,其识别的可靠性较差;此外,基于EEG或ECG 的识别方法则需要几个电极采集生物特征信号,操作繁琐且成本高。\n发明内容\n针对上述现有技术的不足,本发明提出一种基于人体生物特征信息 的身份识别和鉴定方法,其通过提取鉴定对象的生物特征信号并且生成 该生物特征信号的特征向量,与数据库中事先存储的特征模板进行模式 匹配,从而依据匹配结果做出鉴定结论。\n为实现本发明的上述目的,本发明提供了一种基于光电体积信号进 行身份识别和鉴定的方法,该方法包括以下步骤:\na)获取被鉴定者的PPG信号波形;\nb)根据所获得的PPG波形提取PPG信号的生物特征;\nc)根据所提取的PPG信号的生物特征计算PPG信号的特征参数;\nd)根据所述PPG信号特征参数生成被鉴定者的PPG信号特征向量;\ne)将被鉴定者PPG信号特征向量与一预先生成的数据库中该被鉴定 者的PPG信号特征模板之间进行模式匹配;\n当匹配超过一预设的门限值时,判断被鉴定者的身份合格。\n与现有技术相比,本发明具有显而易见的优点,首先,PPG信号易 于从人体的各个部位例如手指,耳垂,手腕,或手臂等提取,操作者不 必具备特别的技能即能掌握,操作成本低,效率高。而且,由于单个个 体的PPG信号基本一致,不同个体的PPG信号存在比较大的差异,PPG 信号也不会像指纹、人脸、声音等特征识别那样易被作假或模仿,因此, 将PPG信号用于身份识别和鉴定的可靠性提高。\n以下通过结合附图对本发明具体实施方式的描述,本领域普通技术 人员将会更加领会本发明的上述技术方案和优点。\n附图说明\n图1为典型的PPG波形示意图;\n图2为被鉴定者甲在两个时刻检测到的PPG波形;\n图3为被鉴定者乙在同样的两个时刻检测到的PPG波形;\n图4是根据本发明的第一个实施例的基于PPG信号的身份识别和鉴 定方法的流程框图;\n图5为图4所示方法中采用的PPG信号的特征示意图;\n图6为图4所示框图中用于提取PPG信号特征的模块流程图;\n图7和图8分别给出了十阶多项式的最小二乘曲线拟合和一阶导数 处理之后的PPG波形;\n图9是根据本发明的第二个实施例的基于PPG信号和指纹相结合的 身份识别和鉴定方法的流程图。\n具体实施方式\n光电体积信号(PHOTOPLETHYSMOGRAPHIC SIGNAL,以下简称 PPG信号)在血压测量中具有很高的诊断价值。人体的每次心跳都会产 生一个脉冲,即PPG波形,如图1所示,该图给出了一个典型的PPG 脉冲的示意图,其中,PPG脉冲100反映了血液容量(x轴)随时间(t 轴)的变化。该脉冲在人体的血液循环系统内传播,而且该脉冲可被光 电体积扫描仪无侵入地检测到。图2和图3所示分别示出了测试对象甲 和测试对象乙在两个不同时刻检测的PPG信号,测试对象甲的PPG波形 为200、210,测试对象乙的为300、310。从图2和图3可以看出,虽然 每个个体的PPG信号的特征会随着检测部位和检测时刻的变化而有所差 异,但是,同一个人的PPG信号基本保持稳定,不同个体的PPG信号却 存在比较大的差异。基于上述认识,本发明人提出将PPG信号用于身份 识别和鉴定。\n图4示出了本发明的第一个实施例,其说明了基于PPG信号进行身 份识别和鉴定的方法。该方法包括提取被鉴定者的PPG信号并对所提取 的原始PPG信号进行预处理;检测经过预处理的PPG信号的生物特征; 根据所监测的PPG信号的生物特征计算PPG信号的特征参数,根据所计 算的特征参数声称特征向量;将所生成的特征向量与以事先存储的PPG 数据库的模板进行匹配;根据匹配的结果判断出被鉴定者是否属于所述 数据库预先确定的人员。\n根据本发明的第一个实施例,可通过如下例举的方法提取被鉴定者 的PPG信号,例如,被鉴定者首先将其自己的ID或其他表示身份的信 息输入到鉴定系统中。将一个PPG检测器用一个绷带附着在被鉴定者的 指尖,连续至少一分钟地记录被鉴定者的PPG信号。\n由于PPG信号比较复杂,既有高频成分,也有低频成分。为了方便 的提取有用的生物特征,要对提取的原始PPG信号进行预处理。例如, 在采样频率为1KHz下将所提取的信号转换为数字信号,然后利用平滑 技术去除PPG信号中的高频噪声和低频噪声。\n经过预处理的PPG信号可以用来提取其生物特征。以下详细分析根 据本发明的方法对PPG信号生物特征的提取。\n参见图5,其中示出了PPG信号的主要生物特征及其特征参数。PPG 信号的生物特征包括PPG信号起始点,PPG信号顶点和谷点。与这些PPG 信号生物特征相应的特征参数包括:上升斜率k1、下降斜率k2、时间间 隔t1、时间间隔t2和顶点个数N,其定义如下:\na.上升斜率k1:每个PPG波形的谷点到其后第一个顶点之间的斜率;\nb.下降斜率k2:每个PPG波形的最后一个顶点到其后一个谷点之间 的斜率;\nc.时间间隔t1:每个PPG波形的谷点到其后第一个顶点之间的时间 间隔;\nd.时间间隔t2:每个PPG波形的第一个顶点到其后一个PPG波形的 谷点之间的时间间隔;\ne.顶点个数N:每个PPG波形上局部极大值的个数。\n其中,每个PPG波形的顶点定义为每个PPG波形所包含的局部极大 值的位置,而每个PPG波形的谷点定义为每个PPG波形的第一个顶点前 第一个局部极小值的位置,如图5所示的PPG波形的谷点为A,第一个 顶点为B,而C为后一个PPG波形的谷点。\n根据该实施例,以接受到的PPG信号前2000点当中的最大值点作为 PPG信号的起始点。在采样频率为1KHz时,选择2000点可以确保至少 包含一个顶点而又不会浪费过多的数据。然而,本领域专业人员可以理 解本发明并不局限于此。\n现在参见图6,当在采集到的PPG信号被输入到起始点检测模块61 以识别PPG信号的起始点之后,顶点和谷点监测模块62将对PPG信号 的顶点和谷点进行监测。具体来说,本发明将十阶多项式的最小二乘曲 线拟合应用于每一个PPG波形,并利用该方法来对PPG波形进行滤波平 滑去噪。图7给出了十阶多项式的最小二乘曲线拟合处理前后的波形。 图7中,上面的波形是未经处理的信号波形,下面的波形为利用十阶多 项式的最小二乘曲线对PPG波形进行拟合处理之后的波形。然后,通过 对拟合后的结果求一阶导数就可计算出PPG信号的顶点和谷点。图8给 出了经过一阶导数处理之后的PPG波形。从图8中可以看出,一阶导数 波形与横轴的交点处(即一阶导数为0处)代表了PPG波形的峰值位置。 图8示出了4个峰值位置,其中有两个顶点和两个谷点。\n接下来,利用图6所示的特征向量生成模块63生成PPG信号的特征 参数k1和k2,其步骤为:\na)对每一个PPG波形的谷点到其第一个PPG波形顶点之间的数据应 用一阶曲线拟合,以计算特征参数上升斜率k1;\nb)对每一个PPG波形的最后一个顶点到其后一个PPG波形谷点之间 的数据应用一阶曲线拟合,以计算特征参数下降斜率k2;\nc)分别对所有的k1和k2求平均值;\nd)将每个PPG波形的第一个顶点位置减去该PPG波形的第一个谷点 位置,以计算特征参数时间间隔t1;\ne)将每个PPG波形的后一个波形谷点位置减去该PPG波形的第一个 顶点位置,以计算特征参数时间间隔t2;\nf)对每个PPG波形的第一个谷点和后一个PPG波形的谷点之间的数 据进行一阶求导,以计算特征参数顶点个数N(例如,在图8中N=2)。\n在上述方法中,进行十阶多项式的最小二乘曲线拟合以及一阶求导 的方法对本领域的普通技术人员来说都是公知的,故此省略具体说明。\n当计算出以上这些特征参数之后,只需利用图6所示的特征向量生 成模块63将这些特征参数按照一定顺序排列即可生成PPG信号的特征向 量。例如,特征向量的一种形式可为:Feature Vector=[K1,K2,t1,t2,N]。\n当然,在本发明所述的基于PPG信号的身份识别和鉴定方法中,PPG 信号的特征参数并不局限于上述参数,还可根据识别系统性能的要求而 引入其它特征信息,如PPG信号的二阶导数特征等。\n接下来,将被鉴定者的PPG信号特征向量与预先制备的数据库中该 被鉴定者的PPG信号的特征模板之间进行模式匹配。在匹配比较和鉴定 判断中,预先设置一个门限值。只有当被鉴定者的PPG信号的特征向量 与事先存储的该系统用户的模板信息的匹配超过上述门限值时,才能确 认被鉴定者属于该数据库预先确定的人员。\n在上述利用人体PPG信号进行身份识别和鉴定的方法的基础之上, 另外又考虑到生物特征信号获取等实际应用问题,本发明进一步提出多 生物特征信息识别,即:提取两种或两种以上的生物特征信息,并产生 相应于上述两种或两种以上的特征信息的联合特征向量。\n图9是根据本发明的第二个实施例所述的基于PPG信号和指纹相结 合的身份识别和鉴定方法的流程图。如图9所示,本实施例中将指尖的 PPG信号和指纹图像生物特征信息结合在一起以用于身份的识别和鉴 定,该方法包括:\na)获取PPG信号和指纹图像并进行预处理;\nb)提取PPG信号的生物特征;\nc)提取指纹特征;\nd)将用于身份鉴定的联合特征信息与事先存储的模板信息的匹配比 较;\ne)基于匹配结果的鉴定判断。\n在获取指尖PPG信号的同时获取指纹图像,这样,识别系统便于系 统用户操作。PPG信号的特征提取如上所述,指纹特征的提取已是较成 熟的技术,在此不再赘述。应该注意,虽然在本发明第二个实施例中是 将指尖的PPG信号和指纹图像生物特征信息相结合,但也可以与其它生 物特征信息(例如虹膜特征)相结合的方式来进行身份识别和鉴定。\n综上所述,本发明提出的基于人体生物特征信息的身份识别和鉴定 方法可以方便,简单的提高身份鉴别的可靠性,还能够结合其他生物特 征技术,实现多生物特征信息身份识别和鉴定。以上对本发明具体实施 方式和实施例的说明仅是示例性的,本领域普通技术人员可以理解本发 明各种特征提取的方法可做作出各种变化和修改,例如,可以根据识别 系统性能的要求而引入其他特征信息,如PPG信号的二阶导数特征等。 这些不偏离本发明思想的变化和修改均落入本发明的权利要求书所限定 的本发明的范围中。
法律信息
- 2014-06-18
未缴年费专利权终止
IPC(主分类): G06K 9/00
专利号: ZL 03122012.6
申请日: 2003.04.21
授权公告日: 2008.01.30
- 2008-01-30
- 2006-04-26
- 2004-10-27
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
1997-12-03
|
1997-05-30
| | |
2
| | 暂无 |
1993-11-12
| | |
3
| |
1999-11-17
|
1999-04-05
| | |
4
| | 暂无 |
1997-02-07
| | |
5
| | 暂无 |
1995-08-15
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |