著录项信息
专利名称 | 降低流量变化和增压二氧化碳的方法和装置 |
申请号 | CN201480052413.2 | 申请日期 | 2014-07-11 |
法律状态 | 权利终止 | 申报国家 | 中国 |
公开/公告日 | 2016-07-20 | 公开/公告号 | CN105793638A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | F17C7/00 | IPC分类号 | F;1;7;C;7;/;0;0查看分类表>
|
申请人 | 丹伯里资源公司 | 申请人地址 | 美国德克萨斯州
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 丹伯里资源公司 | 当前权利人 | 丹伯里资源公司 |
发明人 | 彼得·D·格拉 |
代理机构 | 北京英赛嘉华知识产权代理有限责任公司 | 代理人 | 王达佐;洪欣 |
摘要
当低压的二氧化碳源随时间变化时,提供用于在高压下维持二氧化碳流的稳定流速和压力的装置。通过进入收集器并在收集器中加热的液体的过冷来控制收集器中的液面,所述收集器的尺寸适应供给率的变化,过冷却和加热通过可在收集器中操作的压力控制器来控制。
1.降低来自间歇性速率或变化速率的二氧化碳源的二氧化碳流的流速波动的流量连接装置,其中所述二氧化碳流的压力等于或大于二氧化碳的三相点压力,所述装置包括:
第一热交换器,其被设置为接收所述变化速率的二氧化碳源,并且如果所述二氧化碳为固体则将所述二氧化碳液化为过冷液体,如果所述二氧化碳为液体则将所述二氧化碳过冷;
与所述第一热交换器连接的收集器;
热源或散热器,其用于供应所述第一热交换器和所述收集器中的热通量,其中压力控制器被设置为通过调节阀来维持所述收集器中的设定压力,其中所述阀调节热通量进入所述收集器内,使得当存在净负流量的二氧化碳进入所述收集器时,则一部分的液相二氧化碳蒸发,以及调节热通量进入第一热交换器内,使得当存在净正流量的二氧化碳进入所述收集器时,则一部分的二氧化碳被液化,其中所述热源或散热器由外部过程提供,其中所述外部过程为二氧化碳采收单元;
在所述收集器中的上液面控制器和下液面控制器,其将所述收集器中的收集器体积确定于所述液面控制器之间,选择所述收集器体积以适应来自所述变化速率的二氧化碳源的输出速率的预测的变化;
用于运送加热的流体的导管,所述导管设置于所述收集器中的液面控制器之间或液面控制器的下方,通过响应于所述收集器的压力的所述压力控制器来控制通过所述导管的流量;
第二热交换器,其与所述收集器的出口连接;
用于泵送二氧化碳的泵,其与所述第二热交换器连接;以及
第三热交换器,其与所述泵的下游连接。
2.如权利要求1所述的装置,其中所述热源或散热器为包含制冷剂的热泵。
3.如权利要求1所述的装置,其还包括设置在所述变化速率的二氧化碳源与所述第一热交换器之间的第二阀以便控制回流。
4.如权利要求1所述的装置,其还包括所述收集器中的喷雾器系统以便增加过冷液体和蒸汽的热混合。
5.如权利要求2所述的装置,其中所述制冷剂被选择用于在可应用的压力条件下的二氧化碳液化。
6.以稳定速率从变化速率或间歇性速率的二氧化碳源供应二氧化碳的方法,其包括:
提供处于二氧化碳的三相点压力或三相点压力之上的压力的二氧化碳流;
通过热源或散热器将所述二氧化碳流冷却或加热至产生过冷液态二氧化碳的温度,其中所述热源或散热器由外部过程提供,其中所述外部过程为二氧化碳采收单元;
将所述过冷二氧化碳注入收集器,其中通过响应于所述收集器的压力的压力控制器来控制获得所述过冷二氧化碳的温度的制冷;
将热从所述收集器中的热源或散热器以一定速率供应至所述收集器,所述速率通过响应于所述收集器的压力的所述控制器来控制;以及
从所述收集器泵送流体。
7.如权利要求6所述的方法,其中将所述过冷二氧化碳通过喷雾器系统注入所述收集器。
降低流量变化和增压二氧化碳的方法和装置\n[0001] 发明背景\n1.发明领域\n[0002] 本发明涉及处理注入井内以提高原油采收的二氧化碳(CO2)的表面装置。更具体地,当二氧化碳气体来源于可变速率源或间歇性源时,提供用于降低流速变化(即,流量降低(flow dampening))并以较高的能量效率向井供应高密度二氧化碳的装置和方法。\n[0003] 2.相关技术的描述\n[0004] 将二氧化碳注入油储层以提高从所述油储层采收原油是一项成熟的技术。其已经实践了超过40年。将二氧化碳气体注入一些井中,流过含有原油的岩石,然后连同油以及通常大量的水一起从其它井产生。所述方法的变化包括注入数斯勒格(slugs)的具有二氧化碳的水以提高二氧化碳的驱扫效率。在一些油储层中,额外的油采收主要是二氧化碳在油中具有高溶解度的结果,这使得油相扩张并减少截留在岩石中的油量。二氧化碳的降低原油粘度的作用对从一些储层中提高油采收是重要的。在其它条件下,在原油与二氧化碳之间的置换区可变成是具有油和二氧化碳的混相区。\n[0005] 目前用于溢流油储层的二氧化碳源为包含高纯度二氧化碳和人为二氧化碳的储存器。人为二氧化碳可从工业厂房或能源处采收。最近,宣布了将从精炼厂采收二氧化碳并用于注入井内(Dallas Bus.J.,May 10,2013)。在同一来源中,报道了从氮工厂采收二氧化碳以及从工业厂房采收的计划。\n[0006] 从大气中采收二氧化碳为用于注入地下提供了几乎无限制的供应,但是二氧化碳在大气中的浓度比工业源浓度低。尽管如此,正在开发使用大气、发动机排气、烟道气或二氧化碳的其它源的新方法。在第2013/0047664号美国专利申请公布中描述了一种此类方法,其公开了通过以下结合从大气中除去二氧化碳:使用干燥剂干燥、从干燥空气中吸附二氧化碳、通过降低压力至真空从吸附剂释放二氧化碳、以及在真空室中的冷表面上固化二氧化碳。第2013/0025317号美国专利申请公布公开了用于通过去升华、汽化和液化从气流中除去二氧化碳的方法。第2011/0252828号美国专利申请公布公开了使用低温冷凝的二氧化碳采收方法。第2013/0025317号美国专利申请公布公开了用于烟道气去升华的自冷冻方法。当然,可通过熟知的深度冷冻方法(液化、蒸馏)使二氧化碳与其它气体分离,但是作为独立采收方法用于从包含低浓度的二氧化碳的气体中采收二氧化碳,它们是昂贵的且并不实用。\n[0007] 来自以上所公开的一些方法和其它可能的方法中的二氧化碳产量随时间而变化。\n输出压力可以是低的并且输出速率可以是间歇性的,如来自分批过程(batch process),或不处于稳定速率,如来自需要再生的任何二氧化碳采收过程。为了用于提高油采收率(EOR),在通常为1200psi至3000psi的压力下,数月或数年的注入二氧化碳气体,需要来自低压源的高压缩比。需要稳定速率,因为常规的增压方法受到与间歇性流量相关的问题的不利影响。\n[0008] 需要设备和方法为增压CO2提供更高能量效率的方法,并从以变化速率供应二氧化碳的方法中提供稳定速率的流体。\n[0009] 发明概述\n[0010] 在三相点压力或三相点压力之上,来自源的二氧化碳(CO2)气体通过热泵冷却为过冷液体并喷射进入缓冲(surge)容器或包含两相的收集器。通过收集器的压力控制器控制加入收集器下部的加热盘管内的热量和过冷液体的温度,以便收集器中的密相水平在两个水平之间移动(形成“收集器体积”),而随着致密的CO2以恒定速率从收集器底部泵出以及来自源的CO2的输入速率随时间变化,容器中的压力维持为近似恒定。通过特定源的输出速率的变化来调整收集器中的收集器体积的大小。通过来自源的平均流速控制速度的二氧化碳泵,被用于将收集器底部的更致密的CO2相泵送达到注入井所需的压力以用于提高油采收率,或抽入管道(通常为1200psi至3000psi)或用于其它用途。可将额外的冷却立即用于泵的上游以确保适当的吸入压力并阻止泵中的空穴现象(cavitation)。用于双相容器的热泵过程为了最大效率可使用具有丙烷或其它流体或混合物的热泵流体的常规热泵。\n[0011] 附图简述\n[0012] 图1示例了装置的一个实施方案,所述装置用于降低为了泵送至高压而供应至井、管道或其它应用的二氧化碳的流速变化。\n[0013] 图2示出了本公开方法用于维持来自具有流量变化的源的二氧化碳的稳定流的流程图。\n[0014] 发明详述\n[0015] 参照图1,可变速率的或间歇性的二氧化碳源10使用分批过程、再生过程或引起二氧化碳的输出速率变化的其它过程。源10可基于吸附-解吸附、去升华-升华或其它过程。来自源10的CO2的压力大于三相点压力(75.12psia),或被压缩至等于三相点压力或在三相点压力之上。优选地,所述压力小于临界压力,但是所述压力可高达约2000psi。间歇性流量隔离装置11可用于防止回流至源10。该装置可以是节流阀、止回阀或速动阀,或其可通过压力控制器11a而被控制。CO2可以是相(固体、液体和气体)的任意结合中的任何一个。热交换器\n12可以是壳管式热交换装置、逆流式热交换装置或任何类型的热交换装置。可在热交换器\n12中冷却或加热(取决于来自源10的CO2的相)CO2以液化CO2或使任何超临界CO2的浓度提高,并且使用外部热泵16使液体过冷却。热泵可包括压缩机和冷凝器,并且可使用被选择用于在任何特定应用的压力下优化CO2的汽化和液化的制冷剂。通过温度控制阀13b2来控制制冷剂的供应。或者,热泵可包括散热器和来自外部过程的热源,例如CO2的吸附和解吸附分离至供应源10。可使所述外部过程同步,以适应在所公开的装置中对交替热通量的需要。\n或者,蓄热装置可用于提供适合于特定应用交替热通量需求的热电容。\n[0016] 来自热交换器12的过冷液体(低于饱和温度)进入收集器13,在其中所述过冷液体流入(优选地作为经过喷雾器系统13a的喷雾)蒸汽空间。较重相的二氧化碳的水平可在\n13al和13a2之间变化,所述13al和13a2限定了收集器13中的收集器体积的底部和顶部。选择收集器体积以适应源10的输出速率的变化。水平控制13a1和13a2可用于关停失常状况和/或对源10的平均流量调节为更渐进的变化。水平控制13a1和13a2、压力控制器13b、盘管\n19和流入收集器13的过冷液体被用于维持水平控制13a1和13a2之间的液面。可与温度控制器12b结合工作的压力控制器13b通过阀13b2控制过冷液体的热通量,而热通量通过阀13bl经过盘管19。热媒介流体或制冷剂在16a进入盘管19。可从热泵16或另一源供应热通量,例如使用吸附和解吸附(未示出)的CO2回收过程。压力控制器13b使阀13b2节流,以使得流经喷雾器系统13a的过冷流体冷却13中的蒸汽,液化足够的蒸汽以抵消进入收集器13的液体的净正流入的体积。压力控制器13b节流进入收集器13的饱和液体部分的热流,以使足量的液体蒸发从而抵消净负液体流入。如果存在净正流量的CO2进入收集器13,则通过冷却蒸汽以使部分蒸汽液化从而抵消蒸汽空间体积的下降(提升液面)来维持收集器13中的压力。如果存在净负流量的CO2进入收集器13,则通过加热饱和液体部分以使得足够的液体蒸发从而抵消蒸汽空间体积的上升(液面下降)来维持压力。\n[0017] 泵15可为常规泵,例如多级离心泵。其可用于将液态CO2泵送至管道或井或其它应用。还可在热交换器14中使CO2浓度提高,所述热交换器14可使用来自热泵16的制冷剂(环境空气或其它方式),以提高净正吸入压头从而防止空穴现象或增加泵15的效率。在阀14b提供温度控制,其由温度控制器14a控制。还可在热交换器17提供冷却,以增加下游管道或注入井的效率。设备可以是工业标准的。本文所描述的装置的重要特征之一为:能够以稳定速率从装置中泵送致密的或液态二氧化碳,并且没有无效率和高成本的气体压缩,同时避免了由CO2泵的循环引起的控制和磨损问题。\n[0018] 参照图2,表示了用于以稳定速率供应二氧化碳的方法的步骤,所述二氧化碳来自以变化速率或间歇性速率产生二氧化碳的源。提供了处于二氧化碳的三相点压力或三相点压力之上的压力下的、间歇性速率或变化速率的二氧化碳源。如果源最初在三相点压力或三相点压力之上并未产生CO2,则将CO2压力增加至该压力。然后将流冷却或加热至足以产生过冷液态二氧化碳的温度。然后将流输送至收集器,在其中通过响应于收集器的压力的压力控制器来控制过冷二氧化碳的温度。热通量还可通过流体以一定的速率流经收集器中的导管或盘管而被供应至收集器,其中所述速率通过响应于收集器的压力的压力控制器来控制。导管可为对热传递装置具有适当控制的任意类型的热传递装置,包括电加热器和其它常规装置。泵以稳定速率从收集器中去除致密的或液态二氧化碳,所述稳定速率通过进入收集器的流的平均流速来测定。\n[0019] 尽管已经参照具体细节描述了本发明,但是并不意味着这些细节应该认为是对本发明范围的限制,除非它们被包括在附属权利要求中。
法律信息
- 2021-07-06
未缴年费专利权终止
IPC(主分类): F17C 7/00
专利号: ZL 201480052413.2
申请日: 2014.07.11
授权公告日: 2019.08.09
- 2019-08-09
- 2016-08-17
实质审查的生效
IPC(主分类): F17C 7/00
专利申请号: 201480052413.2
申请日: 2014.07.11
- 2016-07-20
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| | 暂无 |
1963-07-31
| | |
2
| |
2009-01-28
|
2008-09-09
| | |
3
| | 暂无 |
1991-09-30
| | |
4
| |
2008-03-05
|
2005-05-31
| | |
5
| | 暂无 |
1984-12-03
| | |
6
| |
2007-01-17
|
2004-01-30
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |