著录项信息
专利名称 | 包括电容透镜的手指传感器及其相关方法 |
申请号 | CN201180026606.7 | 申请日期 | 2011-04-14 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2013-02-06 | 公开/公告号 | CN102918546A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G06K9/00 | IPC分类号 | G;0;6;K;9;/;0;0查看分类表>
|
申请人 | 奥森泰克公司 | 申请人地址 | 美国加利福尼亚
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 苹果公司 | 当前权利人 | 苹果公司 |
发明人 | G·戈兹尼;R·H·邦德 |
代理机构 | 中国国际贸易促进委员会专利商标事务所 | 代理人 | 陈芳 |
摘要
一种手指感测装置可以包含安装基板、由安装基板承载并具有基于电场的手指感测元件的阵列的集成电路(IC)芯片、以及将安装基板与IC芯片耦接的第一电连接件。另外,手指感测装置可以包括被附接在基于电场的手指感测元件的阵列之上的保护板,该保护板具有在所有方向上大于5的介电常数和大于40微米的厚度,以限定用于基于电场的手指感测元件的阵列的电容透镜。该手指感测装置还可以包括在安装基板和IC芯片的附近以及至少在第一电连接件的周围的密封材料。
1.一种手指感测装置,包括:
安装基板;
集成电路IC芯片,由所述安装基板承载并包含基于电场的手指感测元件的阵列;
多个第一电连接件,将所述安装基板与所述IC芯片耦接;
保护板,被附接在所述基于电场的手指感测元件的阵列之上,并且具有在所有方向上大于5的介电常数和大于40微米的厚度,以限定用于所述基于电场的手指感测元件的阵列的电容透镜;
密封材料,在所述安装基板和所述IC芯片的附近,以及至少在所述多个第一电连接件的周围;以及
由所述保护板承载的至少一个电导体。
2.根据权利要求1所述的手指感测装置,其中,所述保护板具有小于20的介电常数。
3.根据权利要求1所述的手指感测装置,其中,所述保护板具有小于100微米的厚度。
4.根据权利要求1所述的手指感测装置,还包括耦接所述至少一个电导体与所述安装基板的至少一个第二电连接件。
5.根据权利要求1所述的手指感测装置,还包括至少一个光学装置;并且,其中,所述保护板是透明的,并且覆盖所述至少一个光学装置。
6.根据权利要求1所述的手指感测装置,其中,所述多个第一电连接件包括多个接合导线。
7.根据权利要求1所述的手指感测装置,其中,所述保护板与邻近的所述密封材料的上部齐平。
8.根据权利要求1所述的手指感测装置,其中,所述保护板包括:在所述基于电场的感测元件的阵列之上的顶部;以及从所述顶部向下延伸并至少包围所述密封材料的侧壁。
9.根据权利要求1所述的手指感测装置,其中,所述保护板包含电气玻璃、摄影玻璃、派勒克斯玻璃、窗玻璃、电气云母和尼龙中的至少一种。
10.根据权利要求1所述的手指感测装置,还包含:将所述IC芯片和所述安装基板固定在一起的第一粘合剂层;以及将所述保护板与所述IC芯片固定在一起的第二粘合剂层。
11.一种手指感测装置,包括:
安装基板;
集成电路IC芯片,由所述安装基板承载并包含基于电场的手指感测元件的阵列;
多个第一电连接件,耦接所述安装基板和所述IC芯片,所述多个第一电连接件包含多个接合导线;
保护板,被附接在所述基于电场的手指感测元件的阵列之上,并且具有在所有方向上大于5的介电常数和大于40微米的厚度,以限定用于所述基于电场的手指感测元件的阵列的电容透镜;
密封材料,在所述安装基板和所述IC芯片的附近,以及至少在所述多个第一电连接件的周围;
由所述保护板承载的至少一个电导体;以及
至少一个第二电连接件,将所述至少一个电导体与所述安装基板耦接。
12.根据权利要求11所述的手指感测装置,其中,所述保护板具有小于20的介电常数。
13.根据权利要求11所述的手指感测装置,还包括至少一个光学装置;并且,其中,所述保护板是透明的,并且覆盖所述至少一个光学装置。
14.根据权利要求11所述的手指感测装置,其中,所述保护板与邻近的所述密封材料的上部齐平。
15.根据权利要求11所述的手指感测装置,其中,所述保护板包括:在所述基于电场的感测元件的阵列之上的顶部;以及从所述顶部向下延伸并至少包围所述密封材料的侧壁。
16.根据权利要求11所述的手指感测装置,其中,所述保护板包含电气玻璃、摄影玻璃、派勒克斯玻璃、窗玻璃、电气云母和尼龙中的至少一种。
17.一种制造手指感测装置的方法,包括:
将集成电路IC芯片安装在安装基板上,该IC芯片包含基于电场的手指感测元件的阵列;
创建将安装基板与IC芯片耦接的多个第一电连接件;
将保护板固定在所述基于电场的手指感测元件的阵列之上,该保护板具有在所有方向上大于5的介电常数和大于40微米的厚度,以限定用于所述基于电场的手指感测元件的阵列的电容透镜;
在安装基板和IC芯片的附近以及至少在所述多个第一电连接件的周围形成密封材料;
以及
形成由保护板承载的至少一个电导体。
18.根据权利要求17所述的制造手指感测装置的方法,其中,保护板具有小于20的介电常数。
19.根据权利要求17所述的制造手指感测装置的方法,其中,保护板具有小于100微米的厚度。
20.根据权利要求17所述的制造手指感测装置的方法,还包括形成耦接所述至少一个电导体与安装基板的至少一个第二电连接件。
21.根据权利要求17所述的制造手指感测装置的方法,还包括提供至少一个光学装置;
并且,其中,保护板是透明的,并且覆盖所述至少一个光学装置。
22.根据权利要求17所述的制造手指感测装置的方法,其中,保护板包含电气玻璃、摄影玻璃、派勒克斯玻璃、窗玻璃、电气云母和尼龙中的至少一种。
包括电容透镜的手指传感器及其相关方法\n技术领域\n[0001] 本公开涉及生物测定传感器装置(biometric sensor device),并且,更具体地说,涉及一种手指传感器结构,该手指传感器结构具有置于传感器阵列之上的保护性的美观外壳(cover)。\n背景技术\n[0002] 生物测定传感器,特别是指纹传感器,在当今是公知的。这样的传感器是各种不同装置的元件,这些装置使用对唯一的生物测定属性(例如,指纹图案)的识别和匹配来控制对建筑物、计算机、保险箱、软件等的访问。出于这一目的,尽管在本文中描述的背景和实施例可以被等同地应用于针对用户的其它唯一的生物测定属性的传感器,但是关注生物测定传感器的种类内的指纹传感器。\n[0003] 当今典型的指纹传感器包含这样的半导体结构,在该半导体的表面上形成有传感器元件的阵列,以及用于驱动该传感器阵列并操纵从其发送的信号的可选电路。典型的指纹感测系统包括容纳在用于安装到膝上型计算机、蜂窝电话、门锁等中的主体内的这样的传感器。\n[0004] 一种用于指纹感测的当今使用的传感器的通用形式是所谓的电容传感器。通过电容型电场感测或通过在传感器单元中的电容板之间生成弥散电场来操作这些装置。进入弥散场的材料的量会改变该单元的弥散场。这种改变可以被测量并且与接近该单元的指纹的脊线和谷线相关联。存在两种常见类型的电容传感器,即,区域传感器(areasensor)和带状传感器(strip sensor)。在区域传感器中,用户将手指置于传感器阵列之上,当手指在适当的位置的情况下,整个指纹被从该阵列读取。在带状传感器中,用户用手指扫过窄的传感器阵列。手指的运动与来自传感器的数据相关联,并通过软件来组合指纹的数字化图像。在每一种类型的传感器中,传感器的灵敏度都是随着指纹与电容器的板的接近程度而变。随着手指与传感器之间的距离增加,电场强度降低,并且在场中组织存在的影响的强度降低。此外,如果导电材料被置于手指与传感器之间,那么弥散场将被影响,并且感测精度将劣化。\n[0005] 通常,传感器仅能容忍传感器表面与要被感测的指纹之间存在极小的间隙。例如,一种被称为电容传感器的传感器使用电容电场内的指纹的脊线和谷线的相对间距的影响来数字化指纹图案。因此,传感器表面本身通常未被覆盖或被薄薄地覆盖,并且在指纹感测的过程中,用户直接将手指与其接触。但是,暴露的或薄薄地覆盖的传感器容易受到来自环境的污染和机械破坏的影响。\n[0006] 转让给本发明的受让人并通过引用全部并入本文的美国专利No.6,376,393公开了一种用于指纹传感器的各向异性涂层,其通过将磁场施加到可固化电介质流体并然后固化该流体来制造。这样产生垂直于各向异性电介质层的阻抗,该阻抗小于平行于该层的阻抗。本专利还公开了由RF信号驱动的另一种类型的基于电场的感测像素。\n[0007] 此外,指纹传感器的组件通常包括其上形成传感器阵列的芯片(die)。该芯片被固定在基板,该基板本身可以包括用来处理由传感器阵列提供的信号的电子装置。因此,例如,该传感器阵列通常通过导线接合器(wire bond)的方法与基板电互连,该导线接合器连接到芯片的上表面上的接合焊盘、围绕芯片的边缘并位于芯片边缘之上,并最终连接到基板上的接合焊盘。这些导线接合器是关键元件但也是容易损坏的元件,通常通过将其装入不导电密封材料中进行保护。由于需要最小化传感器阵列与用户手指之间的间隙,因此以这样的方式模制密封材料,使得导线接合器被充分地密封,而传感器表面不被覆盖或被薄薄地覆盖。由于导线接合器的一端附接到传感器芯片的上表面,因此导线接合器通常延伸到传感器芯片的表面之上的高度。这意味着,模制的装置的上表面包括:位于第一平面中的传感器的第一区域,以及位于第一平面之上的第二平面中的导线接合器之上的第二区域。\n但是,模制形成这样的薄的密封覆盖物可能相对比较复杂且成本昂贵。\n[0008] 另外,模制材料是公知并且比较完善的。因此,非常希望采用现有的模制材料。但是,现有的模制材料的介电特性可能会使得当与基于电场的装置一起使用时其欠最佳。这样,出于上面讨论的原因,通常需要尽力将传感器之上的模制材料的厚度最小化。\n[0009] 此外,当使用用于传感器覆盖物的密封材料时,覆盖物的颜色的唯一选择就是密封材料的颜色。这可能不能满足针对传感器装置的设计要求,例如,正如用户要求、品牌偏好等所指定的。\n[0010] 此外,可能希望提供与感测功能相关的照明。与传感器封装相关的光源可以在装置的操作期间为用户提供某种形式的可视反馈。在通过引用全部并入本文的美国专利No.7,272,723中公开了一个例子,其中,发光二极管(LED)为用户提供正在由外围键管理装置执行的操作的可视化指示。但是,可能存在希望将光源覆盖在这样的装置中,以便既保护光源又提高装置的美观性。\n[0011] 在这样的已知装置中,光源可以与电连接到处理硬件的基板进行电连通,或者与其它驱动部件进行电连通。可选地,光源和基板可以被封闭在部分半透明或透明壳体的内部之内。在这样的实施例中,壳体是在引入基板和LED之前模制的结构。在最终装置的组装期间,基板和LED被放在一起并固定在事先模制的壳体内。尽管电耦接到基板,但是光源并未安装在基板上或是基板的集成部分。因此,这样分开的壳体、基板和LED组件相对较大,限制了这样的组件可以集成入的装置的类型。另外,仍然存在降低成本并简化制造的机会。\n发明内容\n[0012] 鉴于上述背景,因此,本发明的目的是提供一种生物测定传感器封装,其具有置于传感器阵列之上的在本文中被称为电容透镜的外壳。传感器阵列可以被形成在传感器芯片的表面上,该传感器芯片被固定到基板。基板与传感器芯片通过导线接合器(或其它已知技术)的方法电互连。密封材料保护组件的导线接合器和其它元件。\n[0013] 根据一个方面,芯片附接材料可以被用来将电容透镜物理地固定到芯片的表面。\n也可以采用诸如通用胶、环氧树脂等的其它材料。芯片附接材料和附接的方法可以类似于用来将传感器芯片附接到基板的材料和方法。\n[0014] 根据另一个方面,电容透镜具有高介电常数,在一个实施例中在5或更大的数量级,在另一个实施例中在5至20的数量级。因此可以承载相对较厚的电容透镜,其在40微米与100微米厚度之间的数量级。\n[0015] 根据另一个方面,电容透镜可以是光学透明或半透明的,从而允许用户通过其上表面看到源自于电容透镜下方的光(并且,相反地,允许传感器外部的光被诸如固态照相机等的位于电容透镜下面并且与传感器可选地关联的元件所读取)。\n[0016] 根据另一个方面,电容透镜可以是至少部分地镀金属(从而使得镀金属不会遮挡传感器的操作)的玻璃板。可以在板的上表面上进行镀金属,以便被用户接触。根据这一方面,可以在玻璃板的镀金属上表面与附接有芯片的基板之间提供电连接(例如,通孔、边缘镀金属、导电带等),从而使得镀金属的玻璃板可以取代在这样的组件中使用的传统的金属挡板(bezel),以在感测操作期间将电流给予用户的手指。或者,可以在电容透镜的底侧进行镀金属。\n[0017] 根据该方面的变型,镀金属可以被着色和/或构图,从而使得文本、图像、使用提示或其它视觉标记可以在环境光和/或被从下面照明时可以被看到。电容透镜可以充当光导,从而使得当从下面被照明时,其表面显现出被相对均匀地照明。根据另一个变型,为了实现相同的效果,包含玻璃板的玻璃本身可以被着色。\n[0018] 以上对本发明的多个方面、特征和优点进行了总结。但是,该总结并不是详尽的。\n因此,根据下面的详细描述和附图,本公开的这些和其它的方面、特征和优点将变得更加显而易见。\n附图说明\n[0019] 在本文的附图中,相同的附图标记在各个附图之间表示相同元件。当进行图示时,这些附图未按照比例绘制。在附图中:\n[0020] 图1是根据本发明的一个实施例的传感器组件的俯视图,示出置于传感器芯片和基板之上的电容透镜。\n[0021] 图2是图1的传感器组件的剖切侧视图,进一步示出密封该组件的各个元件的密封材料。\n[0022] 图3是根据本发明的另一个实施例的传感器组件的俯视图,示出置于传感器芯片和基板之上的电容透镜,以及与基板电连通的多个光源。\n[0023] 图4是图3的传感器组件的剖切侧视图,进一步示出密封该组件的各个元件的密封材料。\n[0024] 图5是根据本发明的另一个实施例的传感器组件的俯视图,示出置于传感器芯片和基板之上的具有视觉标记的电容透镜。\n[0025] 图6是根据本发明的另一个实施例的传感器组件的俯视图,示出置于传感器芯片和基板之上的具有视觉标记的电容透镜。\n[0026] 图7是根据本发明的另一个实施例的传感器组件的剖切侧视图,示出具有导电覆层的电容透镜,该导电覆层具有在其上形成的通孔,并且在通孔内和通孔下面的导电材料使得该覆层与基板欧姆接触。\n[0027] 图8是根据本发明的另一个实施例的传感器组件的剖切侧视图,示出具有导电覆层的电容透镜,该导电覆层具有在其上形成的导电带或导电柱(pillar),该导电带或导电柱使得该覆层与基板欧姆接触。\n[0028] 图9是根据本发明的另一个实施例的传感器组件的剖切侧视图,示出具有多个位于其下方的固态传感器的电容透镜。\n[0029] 图10是根据本发明的另一个实施例的传感器组件的剖切侧视图,在制造过程中,电容透镜被固定于包括透镜接纳区域的预先模制结构。\n[0030] 图11是图10的传感器组件的剖切侧视图,该传感器组件具有安装在透镜接纳区域内的电容透镜。\n[0031] 图12是传感器组件的剖切侧视图,示出以盖的形式应用于传感器子组件上的电容透镜,其包括芯片、基板、导线接合器、以及密封和保护导线接合器和其它部件的密封材料。\n具体实施方式\n[0032] 首先指出,对于公知的起始原料(starting material)、工艺技术、部件、设备的描述和其它公知的细节仅作总结或被省略,以免不必要地混淆本发明的细节。因此,在细节是在其它的情况中公知的情况下,留待本发明的申请去建议或指定与这些细节有关的选择。\n[0033] 总体来说,本发明涉及手指感测装置,其可以包含安装基板、由安装基板承载并包含基于电场的手指感测元件的阵列的集成电路(IC)芯片、以及将安装基板与IC芯片耦接的多个第一电连接件。例如,第一电连接件可以是接合导线。另外,手指感测装置可以包括在基于电场的手指感测元件的阵列之上附接的保护板,该保护板具有在所有方向上大于5的介电常数和大于40微米的厚度,以限定用于基于电场的手指感测元件的阵列的电容透镜。\n该手指感测装置还可以包括在安装基板和IC芯片的附近以及至少在多个第一电连接件周围的密封材料。\n[0034] 例如,较优选地,该保护板可以具有大于5且小于20的介电常数。例如,介电常数是各向同性的,也就是说,在所有方向上都相同,使得其比各向异性层更容易制造。例如,保护板还可以具有小于100微米的厚度,尽管更大的厚度也是可以的。\n[0035] 在某些实施例中,手指感测装置还可以包括由保护板承载的至少一个电导体。在这些实施例中,可以提供至少一个第二电连接件,以将所述至少一个电导体与安装基板耦接。\n[0036] 手指感测装置还可以包含至少一个光学装置,诸如光学检测器或光学发射器。因此,保护板可以是光学透明的,并覆盖至少一个光学装置、以及基于电场的手指感测元件的阵列。\n[0037] 在某些实施例中,保护板可以与相邻的密封材料的上部齐平。在其它实施例中,保护板可以包含:在基于电场的感测元件的阵列之上的顶部;以及从顶部向下延伸并至少封闭密封材料的侧壁。在另一些其它实施例中,保护板可以由相关电子装置的结构的一部分(诸如移动通信装置、膝上型计算机、PDA、计算机等的壳体的一部分,或者这些装置的显示屏幕的一部分)来提供。\n[0038] 保护板可以包含电气玻璃(electrical glass)、摄影玻璃(photographic glass)、派勒克斯耐热玻璃(pyrex glass)、窗玻璃、电气云母和尼龙中的至少一种。另外,手指感测装置还可以包含将IC芯片和安装基板固定在一起的第一粘合剂层、以及将保护板与IC芯片固定在一起的第二粘合剂层。\n[0039] 方法方面是用于制造手指感测装置。该方法可以包括:在安装基板上安装包含基于电场的手指感测元件的阵列的集成电路(IC)芯片;以及创建将安装基板与IC芯片耦接的多个第一电连接件。该方法还可以包括:将保护板固定在基于电场的手指感测元件的阵列之上,该保护板具有在所有方向上大于5的介电常数和大于40微米的厚度,以限定用于基于电场的手指感测元件的阵列的电容透镜。另外,该方法还可以包括:在安装基板和IC芯片的附近以及至少在多个第一电连接件周围形成密封材料。当然,正如本领域技术人员将会认识到的,记载的步骤的顺序不应当是限制的。\n[0040] 首先参考图1,其中示出根据一个实施例的指纹传感器组件10的俯视图。为了清楚图示,在没有密封材料的情况下,在图1中示出传感器组件10。具有密封材料的传感器组件\n10的剖切侧视图在图2中示出,并在下面进行更详细的描述。传感器组件10包含基板12,在基板12上形成电互连导线,并且,可选地,传感器组件10可以包括其它电子电路元件。例如,通过本领域已知的芯片附接环氧树脂或其它机构(例如,导电接合凸点(conductive bonding bump)等),将具有16个传感器单元的阵列的传感器芯片14固定到基板12的顶表面。基板12和芯片14每一个都分别设置有多个导线焊盘(wire bondpad)区域18、20。焊盘形成区域18、20的数量和位置将根据特定传感器组件的应用和设计而不同,因此本文中示出的其数量和位置并不限制本公开的范围。导线接合器22与区域18和20的焊盘电互连,从而使得传感器阵列16的单元可以被恰当地寻址。\n[0041] 在本文中被称为电容透镜24的结构被附着在传感器芯片14之上。正如下文将进一步讨论的,电容透镜24具有相对较高的介电常数,以支持电容器板与置于电容透镜之上的用户的手指之间的更高的电容。电容透镜根据与传感器的距离有效地“放大”电容传感器的灵敏度,因此使用“透镜”这一术语。\n[0042] 电容透镜24可以通过在传感器阵列16外围的粘合剂(例如,图2中所示的28)被附着到传感器芯片14,从而使得粘合剂不会干扰传感器阵列16的操作。在某些实施例中,电容透镜24以这样的方式被附有光学透明或半透明粘合剂,使得电容透镜24的光透射性不被显著地影响。在某些实施例中,将电容透镜24附接到传感器芯片14的粘合剂与用来将芯片14附着到基板12的芯片附接材料类似。以这种方式,用于将电容透镜24附接到传感器芯片14的方法和材料与在叠层芯片组件中使用的已经就位的方法和材料类似。在另一个实施例中,未使用粘合剂,但是如下面进一步描述的,作为替代,电容透镜由模制材料围绕并因此被适当地固定。\n[0043] 在一个实施例中,电容透镜24是具有高介电常数的不导电材料的相对较薄的层。\n优选地,电容透镜24的介电常数大于5,并且对于某些实施例,其至少等于15。电容透镜24的相对较高的介电常数允许其支持电场,这更类似于在其板之间的材料具有更高介电常数时电容器具有更高电容的情况。这允许支持这样的场,通过该场,在更大的距离上(即,在传感器之上提供的更厚的层之上)进行电容感测操作。用于电容透镜24的适当的材料的例子及其介电常数范围包括:玻璃(带涂层,电气玻璃:3.8至14.5、摄影玻璃:7.5、派勒克斯耐热玻璃:4.6至5.0、窗玻璃:7.6)、云母(例如,电气云母:4.0至9.0)、尼龙:3.24至22.4等。通常,可以形成为相对薄片并可以使用相对标准的粘合剂粘附到芯片的相对较硬、结构合理、化学惰性、不导电的材料是理想的。在某些实施例中,光学透明或半透明材料也是理想的。虽然有许多这样的材料可以满足这些标准,但是出于图示的目的,关注玻璃作为用于电容透镜24的材料的情况。\n[0044] 参考图2,图1的传感器组件10在剖切侧视图中被示出。除了基板12、传感器芯片14和电容透镜24以外,连接这些元件的粘合剂(例如,芯片附接材料)分别在26、28处示出。此外,通过焊盘18、20(未示出)的方式将基板12与传感器芯片14互连的导线接合器22围绕传感器芯片14的边缘并在传感器芯片14的边缘之上。导线接合器22是关键的但易碎的元件,这些元件通过用在本领域中在其它的情况中公知的类型的密封材料30封闭它们而得以保护。\n[0045] 已知密封材料具有的性质使得它们对于用于诸如电容传感器的基于电场的装置来说不太理想。例如,这样的材料的介电常数通常相当低,这意味着它们不能支持用于电容感测的电场。但是,密封材料非常适合于装置密封的其它方面,诸如:可模制性、耐久性等。\n并且,存在不改变这些材料的构成从而使得这些合适的属性免受影响的强烈的动机。因此,当前的装置使用已知的密封材料,但是将直接在传感器之上的密封材料的层的厚度最小化(或不设置材料),从而使得传感器阵列与用户的手指之间的间隙被最小化,以使密封材料对传感器性能的负面影响最少化。\n[0046] 由于需要最小化传感器阵列与用户手指之间的间隙,因此以这样的方式模制密封材料30,使得导线接合器22被充分地密封,而传感器芯片14表面上的传感器元件的阵列不被覆盖或被薄薄地覆盖。与本领域中已知的允许将导线接合器22密封而又最小地覆盖阵列表面的相对较复杂的模制相反的,根据本公开,电容透镜24的顶表面可以充当用于该结构的顶部的模子停止处(mold stop)。这样,与当前使用的复杂得多的剖面相反的,在截面中,模制部分是简单的矩形。\n[0047] 正如可以从图2看出的,电容透镜24的引入意味着,与没有电容透镜24的结构相比,置于其上的手指将与传感器阵列16隔开得更远。因此,电容透镜24必须具有相对较高的介电常数。我们已经发现,具有大于5的介电常数的材料,在某些实施例中,至少等于15的介电常数的材料,对于保持底层电容传感器(underlying capactive sensor)的弥散电场是有效的,还允许指纹与传感器之间相对较大的间距。该间距(电容透镜24存在于其中)可以从当今已知的约30微米提高到至多100微米。在一个示例性实施例中,具有5或更大的介电常数的40微米的玻璃板可以支持已知电容传感器的弥散电场,以便用户指纹的有效感测。\n其余的装置说明和操作基本上可以在本领域中在其它的情况中被知道。\n[0048] 接下来,参考图3和图4,其中分别示出根据本公开的具有电容透镜54的生物测定传感器组件40的另一个实施例的俯视图和剖切侧视图。为了清楚图示,在图3中示出没有密封材料的传感器组件40,并在图4中示出有密封材料60的传感器组件40。传感器组件40包含基板42,在基板12上形成有电互连导线,并且,可选地,基板12可以包括其它电子电路元件。\n例如,通过本领域公知的芯片附接环氧树脂56或其它机构(例如,导电接合凸点等),将具有\n46个传感器单元的阵列的传感器芯片44固定到基板42的上表面。基板42和芯片44每一个都分别设置有多个导线焊盘区域48、50。焊盘形成区域88、50的数量和位置将根据特定传感器组件的应用和设计而不同,因此本文中示出的其数量和位置并不限制本公开的范围。导线接合器52与区域48和50的焊盘电互连,从而使得传感器阵列46的单元可以被恰当地寻址。\n[0049] 电容透镜54被附着在传感器芯片44之上。电容透镜54可以通过在传感器阵列46外围的粘合剂58被附着到传感器芯片44,从而使得粘合剂不会干扰传感器阵列46的操作。在某些实施例中,以使得电容透镜54的光透射性不被显著地影响的方式,用光学透明或半透明粘合剂附着电容透镜54。在某些实施例中,将电容透镜54附接到传感器芯片44的粘合剂\n58与用来将芯片44附着到基板42的芯片附接材料56类似。以这种方式,用于将电容透镜54附接到传感器芯片44的方法和材料与堆叠芯片组件中使用的已经就位的方法和材料类似。\n[0050] 电容透镜54还是具有高介电常数的不导电材料的薄层。优选地,电容透镜54的介电常数大于5,并且对于某些实施例,其至少等于15。虽然用于电容透镜54的适合的材料的例子包括玻璃、云母、尼龙等,我们将本描述关注于玻璃,但是应当理解本公开并不限于这种材料。\n[0051] 参考图4,通过将导线接合器52(在本图中不可见)封闭于本领域中在其它的情况中公知的密封材料60中来得以保护。与在本领域中已知的允许导线接合器52的密封而保留传感器芯片的传感器元件的阵列不覆盖或薄薄地覆盖的相对较复杂的模制相反的,根据本公开,电容透镜54的顶表面充当用于该结构的顶部的模子停止处,从而使得电容透镜54所处的区域没有密封材料。这样,与当前使用的复杂得多的剖面相反的,在截面中,根据本实施例的模制部分是简单的矩形。\n[0052] 出于上面解释的原因,电容透镜54应当具有相对较高的介电常数。在一个示例性实施例中,具有5或更大的介电常数的大约40微米厚度的玻璃板可以支持已知电容传感器的弥散场,用于对用户指纹的有效感测。在上文中参考图1和图2描述的实施例中,电容透镜\n24的大小被调整以适应传感器芯片14的外围。这允许传感器芯片14为电容透镜24提供物理支持。当然,出于将在下面进一步解释的原因,在图3和图4中示出的实施例中,电容透镜54的大小被调整,从而使得其至少在一个方向上延伸超出传感器芯片44的外围。\n[0053] 传感器组件40设置有例如固定到基板42的一个或多个光源62。在图4中示出的实施例中,光源62被置于传感器芯片44的前后,尽管在适当的实施例中它们也可以或可替换地被置于传感器芯片44的侧面。光源62可以与基板42的元件进行电连通,以控制光源62的开/关状态、亮度、颜色等。或者,光源62可以由在芯片44上形成的电路、与光源62相关联的专用电路或其它未示出的电路元件来控制。\n[0054] 电容透镜54的大小被调整,从而使得其悬挂在光源62之上并覆盖光源62。这样,可选的透明或半透明环氧树脂64或类似的材料可以将光源62与电容透镜54的底侧物理地连接,以对延伸超出传感器芯片44的外围从而否则不被传感器芯片44承载的电容透镜54的部分提供物理支持。于是,由光源62发射的光可以通过透明或半透明环氧树脂64和电容透镜\n54被看到,从而为与传感器组件40等的用户交互提供视觉兴趣、提示等。此外,电容透镜54可以作为光导操作,以分散由光源62发射的光,从而使得电容透镜54的表面的主要部分或全部似乎被均匀地照射。\n[0055] 从光源62和电容透镜54的组合可以获得大量不同的视觉效果。电容透镜54可以被着色和/或构图,从而使得文字、图像、使用提示或其它视觉标记可以在环境光和/或被光源\n62从下面照明时可以被看到。光源62的操作可以被定时,从而提供照明的图案,例如,指示优选的手指扫过的方向、传感器的操作状态(例如,等待感测、处理图像等)或仅仅是用于视觉兴趣的颜色的变换花样和/或光的位置。\n[0056] 设置在电容透镜54之上的图案或其颜色可以通过处理其一个或两个主表面来实现。例如,如图5所示,可以对一个表面进行蚀刻或消蚀以提供标志和/或文字48,或者在图6中示出的使用传感器组件的提示,诸如,指示手指扫过的方向和/或定时的箭头72。或者,一个或两个表面可以具有涂层或层,该涂层或层可以带有被施加或构图的图案以提供标志和/或文字,并且其还可以为电容透镜54所提供的视觉标记提供各种颜色。\n[0057] 如图7所示,电容透镜54还可以设置有导电材料的覆层76。在本实施例的一个变型例中,覆层76是可以通过旋涂、气相沉积、溅射或本领域中已知的其它方法涂布的薄金属涂层。这种镀金属可以在沉积期间(例如,过筛沉积)或沉积后(例如,通过蚀刻或消蚀)构图,以在电容透镜54的表面上获得想要的视觉图像。在可替换的实施例中,电容透镜54被设置有铟锡氧化物(ITO)薄层。导电覆层76的目的在于,提供用于在感测操作期间与用户的手指接触的导电表面。\n[0058] 根据本领域中已知的电容传感器装置的一种设计,例如通过引用全部并入本文的美国专利No.6,512,381中公开的,在感测过程期间,变化电压电驱动被感测的指尖。通过添加外部电极以使用变化电压来电驱动手指,指纹脊线的存在和不存在充当可变电荷转移输入电容器,以补充指纹的脊线对传感器电容器的弥散场造成的影响或干扰该弥散场的影响,从而大大地提高传感器的灵敏度。\n[0059] 为了使用期望的变化电压来驱动用户的手指,手指与电压源电接触。根据在本领域中使用的一种设计,通过在传感器的部分或全部周边提供金属挡板来进行这种接触。当用户通过将手指置于区域传感器上或者将手指扫过带状传感器来将手指施加于传感器表面时,手指都与该挡板物理接触和电接触。因此,该挡板用于与手指接触,以便将来自手指的电荷转移到传感器设备的输入电容器。\n[0060] 但是,导电覆层76的一个优点是,其可以用于与手指电接触,取代由已知传感器组件设计所使用的分开的挡板。存在大量的方法来电互连导电覆层76与其驱动源,诸如基板\n42。在图7中示出的一个这样的方法是在电容透镜54中设置通孔78,并在这些通孔与基板42上的适当的接触焊盘之间通过导电材料80(例如,焊接凸点)进行电接触。一个可替换的方法是在传感器芯片44的接触区域之上设置通孔78,当镀金属时,其使得覆层76与传感器芯片44之间进行电接触。用于与覆层76进行电接触的另一个实施例82是如图8所示,设置覆层\n76与其进行欧姆接触的导电带或导电柱84。正如本领域技术人员将会认识到的,也可以采用其它方法,并且使得覆层76与其驱动源之间进行接触的特定方法不应形成对本公开的范围的限制。\n[0061] 在上述例子中,电容透镜54(或24)包含玻璃。在一个实施例中,玻璃开始作为具有\n5或更大的介电常数的片状材料,在本实施例的其它变型例中,介电常数为10或更大,或15或更大。使用一种或多种不同的技术,玻璃最初可以被镀金属、构图和/或着色。根据特定的应用,玻璃板可以被大量地涂布,或者玻璃板可以基于一个透镜一个透镜地被处理,以在后续处理中与玻璃板分开地产生各个电容透镜。接下来,玻璃板可以被切成近似于典型的硅晶片的形状,例如,8英寸的圆形。这使得允许玻璃在标准晶片处理装置上被处理。然后,玻璃圆被背研磨(back-grind)为大约75和100微米之间的厚度。然后执行对玻璃板的进一步的处理、抛光等。最终,玻璃板被切割以获得单个电容透镜。在一个变型例中,玻璃片被切割成各种长度的条。每一个条基本上都具有在传感器芯片的表面上的像素阵列的宽度。在将晶片分成单个芯片之前并在进行任何组装之前,这些玻璃条被粘附到芯片晶片的顶表面。\n当芯片被分割(分成单个的芯片)时,在宽度方向上把玻璃切割为一定尺寸。\n[0062] 假设电容透镜可以至少部分地透明,那么可以在其下面设置除了光源的其它光学装置,并且,这些光学装置作为传感器的补充物操作或与传感器一同操作。这样的实施例\n120在图9中示出。除了之前描述的元件以外,可以在电容透镜126之下设置固态照相机122和透镜124,电容透镜126在宽度上延伸从而覆盖照相机122和透镜124。照相机122可以是公知的固态CCD或其它类型的照相机,透镜124可以被设置用来限制由照相机122捕获的光谱。\n这样的布置可以用来帮助图像处理(例如,手指速度和方向感测)、验证提供的手指是活着的(反欺骗)、测量其它生物测定数据(例如,心跳)、感测手指的存在(例如,用于开/关电源控制)、与指纹感测分开的功能(例如,光标控制)等。\n[0063] 虽然上述实施例关注其中电容透镜被一体地模制到装置中的装置,但是根据另一个实施例,电容透镜被固定在之前模制的传感器结构。这样的传感器组件90在图10(进行处理中)和图11(完成后)中的剖切侧视图中被示出。传感器90包含基板92、传感器芯片94和连接这些元件的芯片附接材料(粘合剂)96。通过焊盘98、100将基板92与传感器芯片94互连的导线接合器102围绕传感器芯片94的边缘并在传感器芯片94的边缘之上。导线接合器102再次通过将其封闭用在本领域中在其它的情况中公知的类型的密封材料104封闭它们来得以保护。\n[0064] 密封材料104由现有技术中已知的工艺进行模制,以包括透镜接纳区域106。再一次,由于需要最小化传感器阵列与用户手指之间的间隙,因此以这样的方式模制密封材料\n104,使得导线接合器102被充分地密封,而传感器芯片94表面上的传感器元件的阵列不被覆盖或最多被薄薄地覆盖。上述类型的电容透镜108在其的一个表面上被设置有芯片附接材料、环氧树脂或类似的粘合剂,然后被固定在透镜接纳区域106中。尽管本实施例在模制工艺中添加了形成芯片接纳区域106的步骤,但是如图11传感器组件90中所示的最终组装的装置呈现平坦的顶表面,其在传感器芯片之上主要包含电容透镜108。与当前使用的复杂得多的剖面相反的,在截面(未示出)中,模制部分是简单的的矩形。\n[0065] 如图12所示,根据另一个实施例130,电容透镜132被形成为盖,该盖在五侧基本上覆盖基板134和芯片136,并且其中放置有密封导线接合器140的密封材料138。这样的布置提供了对传感器结构的良好的最后加工(fine finish)、一体装置的外观等。\n[0066] 尽管上述实施例包括固定到包括透镜接纳区域的预先模制结构的电容透镜,但是在其它实施例中电容透镜也可以被固定到不包括特别地模制的透镜接纳区域的预先模制结构。确切的说,电容透镜也可以被固定到非模制结构。这样,给定适当的传感器结构,可以将电容透镜固定到该传感器结构,即使该传感器结构在其它情况中不应当接纳该电容透镜。\n[0067] 现代电子装置的物理性质及其生产方法并不是绝对的,而确切地是产生理想的装置和/或结果的统计工作。即使对处理的可重复性、制造设施的清洁度、开始和处理材料的纯度等给予了最大限度的关注,变化和缺陷也会产生。因此,在对本公开的描述中的限制不可以或不应当被理解为绝对的。为了进一步阐明这一点,术语“基本上”可以在本文中偶尔地使用(尽管对变化和缺陷的考虑并不仅局限于使用该术语的那些限制)。尽管精确地定义与限制本公开本身同样困难,但是我们还是期望该术语被解释为“最大程度地”、“接近可实用地”、“在技术极限之内”等。\n[0068] 此外,尽管在前述的详细描述中已经呈现了多个优选的示例性实施例,但是应当理解还存在大量的变型例,并且这些优选的示例性实施例仅仅是代表性的例子,并且不应当以任何方式限制本公开的范围、应用性或配置。各种上述公开的和其它的特征和功能、或其替换,可以理想地被组合到很多其它不同的系统或应用中。各种当前不可预见或不可期待的替换、变型例或及其改进随后可以由本领域技术人员做出,它们也应当被包含在本公开内。\n[0069] 因此,前述描述为本领域普通技术人员提供用于实现本公开的方便的指南,并且在不脱离本发明的精神和范围的情况下,可以设想对描述的实施例做出在功能和布置上的各种改变。
法律信息
- 2016-05-11
- 2015-08-12
专利申请权的转移
登记生效日: 2015.07.22
申请人由奥森泰克公司变更为苹果公司
地址由美国佛罗里达州变更为美国加利福尼亚
- 2013-03-20
实质审查的生效
IPC(主分类): G06K 9/00
专利申请号: 201180026606.7
申请日: 2011.04.14
- 2013-02-06
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2006-07-19
|
2006-01-20
| | |
2
| | 暂无 |
2003-10-09
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |