具有浮力的发电平台\n[0001] 相关申请的交叉引用\n[0002] 本申请要求如下优先权:\n[0003] (1)2009年1月30日提交的标题为“Apparatus for Generating Electricity from Flowing Fluid Using Generally Prolate Turbine”的美国临时专利申请\n61/202,126,该申请的公开内容通过参引整体结合入本文;\n[0004] (2)2009年2月4日提交的标题为“Folding Blade Turbine”的美国专利申请\n61/202,189,该申请的公开内容通过参引整体结合入本文;\n[0005] (3)2008年8月22日提交的标题为“Fine Arts Innovations”的美国临时专利申请61/189,950,该申请的公开内容通过参引整体结合入本文;和\n[0006] (4)2009年7月20日提交的标题为“Platform for Generating Electricity from Flowing Fluid using Generally Prolate Turbine”的美国专利申请61/213,829,该申请的公开内容通过参引整体结合入本文。\n背景技术\n[0007] 当今的水力发电主要使用蓄水坝,例如堤坝。\n[0008] 为了不用蓄水坝将水流转换为电,将流中能量转换装置放置在流动流中。据电力科学研究院的研究,不用蓄水坝的这种流中发电仍然有很大的未开发潜力。参见例如电力研究院2007年3月的“North American Ocean Energy Status”。此报告陈述了世界首个安装于真正离岸位置的大尺寸船舶可再生能源系统是2003年5月安装在英国德文郡海面上的船舶海流涡轮机(MCT)300kw实验性海流单元。MCT海流单元使用将流体动力大体扁平的叶片用作工作构件的转动轴流式涡轮机。(此处的术语“工作构件”指具有起作用以与诸如水的工作流体起作用的表面 的构件,故而工作流体的运动引起工作构件的运动。)该报告讨论了使用具有大体扁平叶片的轴流式涡轮机的其他流中项目。Verdant Power 5.5轴流式涡轮机自2006年12月起安装在纽约的东河中。加拿大不列颠哥伦比亚省Race Rocks潮汐项目在2006年12月首次发电。\n发明内容\n[0009] 本发明一些实施方式的目标是为了提供一种用于从流体流、特别是从在相对较浅的河流及潮汐流发电的改进的流中平台。本发明一些实施方式的其他目标是提供:\n[0010] (a)用于从流体流发电的自浮平台;\n[0011] (b)用于从流体流发电、同时对海洋野生生物及海洋环境影响很小的平台;\n[0012] (c)用于从受结冰影响的流体流发电的平台;\n[0013] (d)用于从流体流发电的小型平台;\n[0014] (e)低成本发电的改进的设备;以及\n[0015] (f)用于发电的设备的可升级布置;和\n[0016] (e)用于从水流及气流的组合发电的改进的设备。\n[0017] 这些及其他目标可以通过提供包括成对的水力涡轮机的平台达到,所述水力涡轮机使用类似于螺纹的大体螺旋形工作构件,从而将川流转换为大体长椭圆形的承载件的转动。(通过非限制性示例的方式,可以认为橄榄球具有长椭圆形形状。)此承载件外部上的螺旋形工作构件倾向于(a)去除残渣;(b)避免卡住或伤害海洋生物;以及(c)具有用于在引起表面结冰的条件下延续操作的改进特性。大体长椭圆形形状通过排水提供浮力以支撑发电机及装载于平台上的其他设备。与在圆形缸体上的同等尺寸的工作构件相比,大体长椭圆形形状可以使绕其外围的流体流加速,并提供增加的径向转矩,以及绕其中心轴线的力矩。\n[0018] 当流动的流体撞击在螺旋形工作构件上并使工作构件转动时,水力涡轮机可以发电。转动的工作构件耦联于驱动系统,这样就将转动能传 递至至少一个发电机。各涡轮机反向转动,从而在平台上的净力矩至少部分地(优选为全部)消除。对于各处的讨论,本发明各实施方式在本文中参照从水流中发电而描述,但也可以考虑从任意流体流发电。\n[0019] 此外,风力涡轮机可以与水力涡轮机组合使用。此风力涡轮机牢固地定位在平台外壳上,其中风力涡轮使用多个叶片以将风的动能转换为转动能。水力涡轮机与风力涡轮机的组合提供多个、可能是互不相关的能量转换源,这与单独使用两个来源相比产生了更大的净能量输出和更低的变化。多个平台可以成组锚泊于潮汐、河流或其他川流中,同时仍具有很小的环境影响。\n附图说明\n[0020] 将参照下面的附图,其图示了由(一位或多位)发明者构想的本发明的优选实施方式。\n[0021] 图1图示了用于从流动流体发电的平台的俯视平面图。\n[0022] 图2图示了用于从流动流体发电的平台的侧视平面图。\n[0023] 图3图示了用于从流动流体发电的平台的正视平面图。\n[0024] 图4图示了用于从流动流体发电的平台的立体图。\n[0025] 图5图示了用于从流动流体发电的平台的框架部件的立体图。\n[0026] 图6图示了用于从流动流体发电的平台的示例性发电机及驱动系统部件的立体图。\n[0027] 图7图示了用于从流动流体发电的、具有风力涡轮机及流体涡轮机组合的平台的立体图。\n[0028] 图8a和8b是用于从流动流体发电的平台的优选功率调节电路系统的示意性简图。\n具体实施方式\n[0029] 图1图示了用于从流动流体发电的示例性平台10的俯视图。平台 10图示为诸如通过浮标20在一端附连于系泊索具。为进行描述,示出为附连于浮标20的平台10的端部可以称为“前”端,而相对端可以称为“尾”端。当从尾端向前看时,平台10的左侧可以称为“左舷”侧,而右侧可以称为“右舷”侧。\n[0030] 平台10包括框架,所述框架具有左舷纵向侧构件26及右舷纵向侧构件28,所述左舷纵向侧构件26沿平台10的左舷侧从头到尾延伸,所述右舷纵向侧构件28沿平台10的右舷侧从头到尾延伸。附加框架构件(下文进一步讨论)以优选地大体平行而间隔开对齐的方式保持侧构件26、28。左舷侧构件26将左舷侧的、优选为大体长椭圆形的水力涡轮机\n12保持在沿平台10的左舷侧从头到尾延伸的位置。右舷纵向侧构件28将右舷侧的、优选为大体长椭圆形的水力涡轮机14保持在沿平台10的右舷侧从头到尾延伸的位置。\n[0031] 优选的水力涡轮机12、14具有围绕防水的、大体长椭圆形壳体16、18的外部盘绕的螺旋形工作构件(类似于螺纹)15、17。涡轮机12、14的壳体16、18大体为长椭圆形,即大体关于中心轴线对称、中部宽、两端窄。虽然大体长椭圆形的壳体是期望的,但是曲率可以变化,壳体无需是数学意义上完美的长椭圆形形状。涡轮机12、14优选地具有足够的排水量以确实地漂浮,以及将平台10保持在水面上或水面上方。优选地,涡轮机12、14提供足够的浮力以支撑框架及发电机,同时使外壳保持在水线上或在水线上方。涡轮机12、14可以完全浸没或部分浸没使不少于其直径的1/3在水中。如果设置有完全或部分浸没、或者不然则(诸如由架空电缆)平衡船重量的附加结构,优选地,所述附加结构提供的浮力比涡轮机12、14一起提供的组合浮力小,更优选地,所述附加结构提供的浮力比单个涡轮机12、\n14单独提供的浮力小。在上述各示例中,涡轮机提供浮力的绝大部分。涡轮机12及14可以包括一个或多个内部压舱气囊或隔室(未示出),其具有进入口以调整总浮力,以及平衡头-尾的浮力及舷-舷的浮力。可选的,也可以通过框架上的压舱物调整浮力。\n[0032] 左舷纵向侧构件26朝向构件26的前端支撑前部左舷侧发电机32,而右舷纵向侧构件28朝向构件28的前端支撑前部发电机34。各纵向侧构件26、28朝构件的尾端支撑尾部发电机33、35。诸如链或带(图1中未示出)的传动系统将水力涡轮机12、14耦联于发电机32、33、34、 35,这将在下文进一步讨论。耦联于框架的外壳22为控制、功率调节及其他设备提供环境保护。\n[0033] 虽然图1的实施方式图示了在平台10的头尾端的四个发电机,但是也可以使用不同数量的发电机和/或位置。例如,各纵向侧构件26、28可以支撑单个发电机,该单个发电机放置成沿纵向侧构件更靠近中央处以平衡平台上的其他载荷。可选地,平台可以具有单个放置在中央的发电机。可以添加压舱物从而使平台平衡。此处的实施方式不限于任何特定数量的发电机或发电机的放置方式。\n[0034] 框架适于附连于单个系泊浮标20,优选地通过在沿前横杆19的两点处附连的绳索。浮标20又可以通过锁链附连于底部停泊点以形成“松弛”系泊。通过这种系泊,平台可以绕停泊点摆动,这允许平台在诸如潮汐流的可逆流水流中继续操作。可选地,平台可以系泊于高架缆索或其他水上结构,或系泊于打入底部的固定塔。当平台10牢固地系泊时,撞击在螺旋形工作构件15、17上的水流使工作构件15、17转动。工作构件的转动又引起发电机32、33、34及35的转子的转动并发电。电力可以依据特定地点的系泊特性而通过水下电缆或高架电缆传送至岸上。可选地,电力可以在平台本身上使用,诸如用于净化水或产生氢燃料。\n[0035] 图2是平台10及系泊浮标20的右舷侧视图,该图图示了示例性外壳22、右舷水力涡轮机14以及右舷发电机34、35。图2的实施方式示出了右舷涡轮机14上的单个工作构件17,不过可以使用不同数量的工作构件。例如,在一种可选的实施方式(未示出)中,涡轮机可以包括类似于双头螺纹那样交错的两个螺旋。图2还图示了用于前部和尾部发电机\n34和35的驱动系统的元件的示例性布置方式。在这种实施方式中,前部右舷带或索链31a将前部右舷发电机34耦联于右舷涡轮机14的前端,而尾部右舷带或索链31b将尾部右舷发电机35耦联于右舷涡轮机14的尾端。此视图还图示了框架的顶部支杆29a,这将在下文参照图5进一步讨论。\n[0036] 图3是平台10的前部端视图,该图图示了外壳22、右舷水力涡轮12、左舷水力涡轮14、前部右舷发电机32、前部左舷发电机34、前部右舷驱动带或索链30a、前部左舷驱动带或索链31a以及包括系泊横杆19及顶部支杆29a、29b的框架元件的示例性放置方式。从此视图中可以看出,螺旋形水力工作构件15、17优选为反向旋转,故而涡轮机12 及14上的任何侧向力至少部分地(并且优选为大致完全)彼此平衡以保持平台10的位置。此视图也图示了框架的顶部支杆29a及底部支杆29b,这将在下文参照图5进行描述。图3未示出紧固于横杆19的系泊浮标20。但本领域普通技术人员将会理解,也可以使用浮标或其他锚泊机构以系泊或紧固地定位平台10。\n[0037] 图4是平台10的立体图,该图进一步图示了外壳22、右舷水力涡轮12、左舷水力涡轮14、前部右舷发电机32、前部左舷发电机34、尾部左舷发电机33、前部右舷驱动带或索链30a、前部左舷驱动带或索链31a以及特别是系泊横杆19的框架元件的示例性布置。从此视图中还可以看出,螺旋形工作构件15、17反向旋转。此视图未示出紧固于横杆19的系泊浮标20。但本领域普通技术人员会理解,可以使用浮标或其他锚泊机构以系泊或紧固地定位平台10。\n[0038] 图5是框架24的立体图。框架24包括如前面讨论的左舷纵向构件26、右舷纵向构件28。前部横杆41大体垂直于纵向构件26、28而延伸,并在纵向构件26、28的前半部连接于纵向构件26、28。尾部横杆42大体垂直于纵向构件26、28而延伸,并在纵向构件26、\n28的后半部连接于纵向构件26、28。因此,纵向构件26、28及横杆41、42形成大体平面的水平方形,其中纵向构件26、28的部分从头到尾地延伸超出横杆41、42。从方形的顶点处或靠近顶点处,四个支杆29a汇聚于在方形平面上方的顶点处,而四个附加支杆29b汇聚于在方形平面下方的顶点处,从而形成八面体的侧边。两个顶点的位置,如果投影于方形平面上,则均处于中心。顶点可以可选地由竖直杆(未示出)连接。八面体的支杆29a、29b为纵向构件26、28提供抗扭及抗剪刚度。也可以设置有利于框架强度和/或刚度的附加和/或替代性支撑装置。\n[0039] 附加前部横杆19大体垂直于纵向构件26、28延伸,并在靠近纵向构件的前端处连接于纵向构件26、28。此附加前部横杆19为系泊提供牢固而方便的附连点。\n[0040] 图6是用于从流动流体发电的平台的驱动系统部件的立体图。虽然图6仅图示了前部右舷涡轮机14及发电机34的一部分,但是应当理解,在此实施方式中,将会找到前部左舷发电机32的类似布置,并且可以找到尾部右舷发电机33及尾部左舷发电机35的类似布置。\n[0041] 此实施方式的右舷涡轮机14包括螺旋形工作构件17,该螺旋形工作构件17以一比一的转动关系耦联于相应壳体18。即工作构件17的单个转动导致相应壳体18在相同的转动方向上的单个转动。工作构件17可以直接安装并固定于壳体18的外部。右舷涡轮机\n14以可转动的方式安装于轴承(未示出),所述轴承设置在帽38内并耦联于右舷纵向构件\n28。帽38优选地具有使流向右舷涡轮机14的流顺畅的外部轮廓(并在涡轮机后缘使离开涡轮机的流顺畅)。其还保护轴承不受残渣影响。传动元件31a(可以是带或索链)通过滑轮51将涡轮机14耦联于轴52,或可以将滑轮在其最端部的点51处直接附于壳体18的外部。轴51又驱动前部右舷发电机34的转子。轴52通过轴承53耦联于右舷纵向构件28。\n[0042] 当运动的流体(例如流水)撞击在螺旋形工作构件17上时,使螺旋形工作构件17及壳体18绕轴承(位于帽38内)转动。涡轮机14的转动与带或索链31a接合,这样就将机械能通过滑轮51及轴52传递至发电机34。滑轮的直径可以选择成使轴52以与涡轮机\n14不同的速率转动。即滑轮可以使轴52以比涡轮机14高或低的每分钟转数转动。\n[0043] 水力涡轮机14的中心线可以位于水面下方,因此轴承应当是能浸没在水中的,并选择成用于长时间的水下操作。帽38及纵向构件28的前端也可以在水下或在水面处,优选地将制成凹凸不平的以使残渣转向,并用作轴承的防护罩。\n[0044] 图7是具有组合的风力涡轮机及水力涡轮机的平台60的视图。平台60包括类似于上文参照图1至6描述的那些的框架71、左舷水力涡轮机62及右舷水力涡轮机63。各涡轮机62、63具有优选地以一比一的转动关系耦联于相应壳体66、67的螺旋形工作构件64、\n65。外壳70为控制、功率调节及其他设备提供环境保护。\n[0045] 风力涡轮机61定位在外壳70上。在一个实施方式中,风力涡轮机61是具有多个叶片74的水平轴线风力涡轮机,更具体地,可以是在2009年2月4日提交的标题为“Folding Blade Turbine”的共同待审美国专利申请61/202,189中公开的风力涡轮机。可以使用其他风力涡轮机。\n[0046] 图8a和8b是用于从流动流体发电的平台的优选功率调节电路的示意性简图。图\n8a是具有诸如单个左舷侧发电机81a及单个右舷侧发电 机81b的两个发电机的平台的示意图。各发电机81a、81b产生交流电(AC),此交流电具有可以根据涡轮机(未示出)转动速率及发电机电路上的电载荷而变化的频率及电压。整流器82a、82b将交流电转换成为平台内部使用的直流工作电压的直流电(DC)。可选的电池83和/或其他储存元件(例如电容)为由两个发电机所生产的电提供组合式储存。逆变器84将组合直流电转换为交流电,此交流电具有适于客户的受调频率,并具有用于平台内部的交流工作电压。变压器85提供平台与传输电路86之间的电隔离。变压器85也可以使交流电的电压从交流电工作电压提高至适于输送至客户的电压。\n[0047] 图8a所示的电路系统可以通过增加附加整流器而适于附加发电机。图8b是具有用于流体涡轮机的4个发电机81a、81b、81c、81d以及用于风力涡轮机的第五发电机81e的平台的示意图。附加的整流器82c、82d、82e将交流电转换成在直流电工作电压下的直流电。电池83、逆变器84及变压器85执行与图8a中相同的功能,但它们的额定容量可以增加,诸如通过增大电池83的存储容量及逆变器84和变压器85的电流容量。还可以设置诸如保险丝、开关、监视设备等的附加电路系统。\n[0048] 在既具有水力涡轮机又具有风力涡轮机的平台的情况下,来自不同资源的发电在某种程度上将不相关。这可能造成与仅有风力或水力涡轮机相比,平台的功率输出的净变量减小。减小的变量意味着电池储存容量可能会小于分开的风力或水力安置所需要的储存容量。\n[0049] 上文描述的实施方式意于为说明性而非限制性的。可以进行各种修改而不脱离本发明的范围。本发明的范围不应当由上文描述限定,而应当仅根据下文权利要求及其等同方案限定。
法律信息
- 2015-05-20
- 2011-10-12
实质审查的生效
IPC(主分类): F03B 13/12
专利申请号: 200980138939.1
申请日: 2009.08.21
- 2011-08-31
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有引用任何外部专利数据! |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |