1.一种用于监测和/或感测具有至少两个运动轴线的机器人装置的预定位置的监测装置,所述机器人装置包括围绕Z轴线能够旋转的主支承件(9)和由其支承的机器人臂(11), 所述监测装置包括至少两个传感器(15,16,33)和分配给所述传感器的传感器工作面(17a,
17b,18a-18f,34,36a,36b,36c),所述监测装置随在所述至少两个传感器(15,16,33)中的第一传感器和/或第二传感器处能够获得的信号变化来将启动信号发送至所述机器人装置,以实现预定移动,其特征在于,所述第一传感器(15,33)限定为用以感测所述主支承件(9)的水平位置和/或旋转位置,以及所述第二传感器(16)感测所述机器人臂(11)的受限定的水平位置,且选择性的传感器工作面(17a,17b,18a-18f,34,36a-36c)独立于所述机器人装置(5)布置在所述机器人装置(5)的水平运动地带和/或回转地带中以用于所述第一传感器(15;33)。
2.根据权利要求1所述的监测装置,其特征在于,所述第二传感器(16)限定为感测所述机器人臂(11)的在其收缩位置处受限定的水平位置。
3.根据权利要求1所述的监测装置,其特征在于,分配给所述第一传感器(15)的所述传感器工作面(17a,17b,18a-18f)布置成固定就位。
4.根据权利要求1所述的监测装置,其特征在于,分配给所述第一传感器(15)的至少一个传感器工作面(34)布置成沿轴线能够移动且独立于所述机器人装置。
5.根据权利要求1所述的监测装置,其特征在于,至少一些所述传感器(15,16)构造为数字接近开关,在受触动时,所述数字接近开关处能够获得为1的输出信号。
6.根据权利要求1所述的监测装置,其特征在于,所述至少一个传感器为光学传感器(33),借助于所述光学传感器(33)能够探测到所述机器人装置(5)的预定位置。
7.根据权利要求1或权利要求2所述的监测装置,其特征在于,所述监测装置包括连接到所述传感器(15,16)上的感测控制器(21),以用于控制所述机器人装置(5),以便仅在第一传感器(15)和/或第二传感器(16)受触动时才宣布所述机器人装置(5)自由移动。
8.根据权利要求7所述的监测装置,其特征在于,所述感测控制器(21)控制所述机器人装置(5),使得不允许所述机器人臂(11)的运动,直到所述第一传感器(15)受触动。
9.根据权利要求8所述的监测装置,其特征在于,所述感测控制器(21)控制所述机器人装置(5),使得仅在所述第二传感器(16)受触动时才总体上允许启动所述机器人装置(5)的水平移动。
10.根据权利要求1-3中任一项所述的监测装置,其特征在于,分配给所述第一传感器(15,33)的所述传感器工作面(17a,17b,18a-18f,34,36a-36c)仅布置在所述机器人臂(11)的允许运动的地带中。
11.根据权利要求10所述的监测装置,其特征在于,分配给所述第一传感器(15,33)的所述传感器工作面(17a,17b,18a-18f,34,36a-36c)仅布置在机械工具(2a,2b,2c)和/或框(3a-3f,32)的区域中。
12.根据权利要求1-6中任一项所述的监测装置,其特征在于,所述机器人装置(5)布置成固定的但能够回转,所述弯曲的传感器工作面(18a,18b)布置在所述机器人装置(5)的回转地带中,且分配给所述第一传感器(15)。
13.根据权利要求1-6中任一项所述的监测装置,其特征在于,所述第二传感器(16)布置在支承所述机器人臂(11)的垂直滑块(10)上,在所述机器人臂(11)处,分配给所述第二传感器(16)的传感器工作面(19)布置成使得一旦所述机器人臂(11)处于其收缩的静止位置,就在所述第二传感器(16)处输出为1的输出信号。
14.根据权利要求1-6中任一项所述的的监测装置,其特征在于,所述机器人装置(5)布置成在Y方向(23)上行进,所述监测装置包括分配给所述第一传感器(15,33)的平行于和/或横切于所述Y方向(23)运行的传感器工作面(17a,17b,18a-18f,34,36a-36c)。
15.根据权利要求13所述的监测装置,其特征在于,所述机器人装置(5)的主支承件(9)借助于基板(6)上的可旋转底脚(7)支承,所述监测装置包括与彼此成一定角布置在所述机器人装置(5)的基板(6)上的至少两个传感器(26,27),以及布置在可旋转的底脚(7)上且与所述传感器(26,27)协作的传感器工作面(30),所述传感器(26,27)布置成以便在所述主支承件(9)的预定的旋转位置触动所述传感器(26,27)中的一者。
16.根据权利要求14所述的监测装置,其特征在于,所述机器人装置(5)主支承件(9)借助于基板(6)上的可旋转底脚(7)支承,所述监测装置包括与彼此成一定角布置在所述机器人装置(5)的基板(6)上的至少两个传感器(28,29),所述两个传感器(28,29)与布置在所述地板的区域中的所述传感器工作面(30)协作,以便在所述机器人装置(5)的预定的转移位置触动所述传感器(28,29)中的一者。
17.根据权利要求1-6中任一项所述的监测装置,其特征在于,所述机器人装置(5)的机器人臂(11)在所述水平方向且相对于所述支承件(9)仅沿轴线能够移位,所述第二传感器(16)构造成用以监测所述机器人臂(11)的收缩的水平位置。
18.一种包括根据前述权利要求中任一项构造的监测装置的生产系统(1),所述生产系统(1)包括至少一个机器人装置(5)以及能够由所述机器人装置(5)给送的机械工具(2a,
2b)和/或框(3a-3f),其特征在于,传感器工作面(17a,18b,18a-18b)布置在借助于所述机器人装置(5)待被给送的框(3a-3f)的地带或待被给送的机械工具(2a,2b)的地带中,使得当所述机器人装置(5)处于对应的框(3a-3f)或对应的机械工具(2a,2b)的装卸地带或卸载地带时,由各个传感器工作面(17a,18b,18a-18b)触动所述第一传感器(15),以及所述第二传感器(16)布置在所述机器人装置(5)上,使得能够感测到所述机器人臂(11)的受限定的水平位置。
19.根据权利要求18所述的生产系统,其特征在于,所述第二传感器(16)限定为感测所述机器人臂(11)的在其收缩位置处受限定的水平位置。
20.根据权利要求18所述的生产系统,其特征在于,各个传感器工作面(17a,18b,18a-
18f)的水平范围选择成以便在触动所述传感器(15,16)时,所述机器人装置(5)能够行进预定量和/或围绕预定角旋转。
21.根据权利要求18至20中任一项所述的生产系统,其特征在于,当所述机器人臂(11)处于收缩的静止位置时,所述第二传感器(16)受触动。
22.根据权利要求18至20中任一项所述的生产系统,其特征在于,仅在所述传感器(15,
16)中的至少一者处于所述触动状态时,所述感测控制器(21)才将批准所述机器人装置(5)的运动。
23.根据权利要求18至20中任一项所述的生产系统,其特征在于,当所述传感器(15,
16)都未处于所述触动状态时,将否定借助于所述感测控制器(21)的对所述机器人装置(5)的运动的批准。
用于机器人装置的位置监测的监测装置及含其的生产系统\n技术领域\n[0001] 本发明涉及一种用于监测和/或感测具有至少两个运动轴线的机器人装置的预限定的位置的监测装置,该机器人装置包括围绕垂直轴线(Z轴线)可旋转的主支承件、以及由主支承件支承的机器人臂。此外,本发明涉及一种包括一个此类监测装置的生产系统。\n背景技术\n[0002] 对于机器人装置的安全操作,例如,在生产系统中,必须采取预防措施,以便安全地排除机器人装置的运动对操作者的任何伤害。除主动系统如光栅、限位开关等之外,这些预防措施主要还涉及一些类型的安全栅栏形式的屏障。在屏障布置在对应的机器人装置的运动地带内的情况下,其需要足够坚固,以便机器人装置即机器人臂或抓爪或工件不可穿透屏障,必须使得机器人臂不会因为故障或对机器人臂编程或操作时的误差而穿透屏障。\n当然,很清楚的是,在涉及很繁重的转移运动的情况下,此类屏障中涉及的复杂性巨大,尤其是因为通常工具并且具体地工件重达100kg,且更需要通过普通机器人装置运输。尽管当然有可能将栅栏置于机器人装置的运动地带外,但这对于生产管理几乎是不可接受的,尤其是在至机械工具、框等的整齐通路的情况下需要最小覆盖区域时。\n[0003] 从EP0122147A1中已知了一种工业机器人装置,其特征为320°的旋转轴线和径向轴线,以便机器人臂可旋转且可沿径向移位。如图1至图5中所示的径向轴线组件R包括支承可动托架22的水平臂结构20,包括轨道62和64的双轨道引导系统、滚珠螺杆驱动机构30,以及包括驱动马达42、转速计44和分解器46的DC伺服驱动件40。水平臂结构20终止于抓爪G。\n行程接近开关24的端部固定到可动托架22上,且与连续的接近目标板25对准,目标板25延伸可动托架22的规定行程的长度。接近目标板25的端部28和29限定可动托架22的行程极限的端部。当接近开关24超过接近目标板25的边缘时,接近开关信号被传输回控制操纵台RC,且控制操纵台RC使工业机器人装置的驱动马达断电。如果与接近开关24的接线中断或受损,则这种停机动作也会发生。返回位置接近开关26也固定到可动托架22上,且用于在控制操纵台RC生成试图返回的命令时指示可动托架22的返回位置。径向轴线组件R通过使可动托架22朝θ轴线组件T移动来响应于试图返回命令,直到接近开关26探测到接近目标板27。\n然后,接近开关26将信号传输至控制操纵台RC,且控制操纵台RC搜索分解器45的无效位置。\n这最终将可动托架22定位在其返回位置处。返回位置用作储存在控制操纵台RC的存储器中的所有程序信息的初始位置的参照。附接到径向轴线组件R上的行程接近开关110的端部跟随固定到θ轴线组件T的壳体82上的目标板112。如图8清楚的是,目标板112覆盖大约320°的角。另一个限制开关110通过向控制操纵台RC发信号来使驱动马达断电来探测移动(旋转运动)的角度的行程极限113和115的端部。因此,在此机器人装置中,也感测径向轴线、旋转轴线以及托架的端部位置。\n[0004] US4,795,957A公开了一种分配有台14的常规机器人装置10,以用于在X方向和Y方向上移位和旋转。如从图1和图2中清楚的那样,机器人臂20由两个路径56电连接到AC电源上,其中的一个路径的特征为串联连接的三个开关S1,S2,S3。一旦机器人臂违反预定位置,则通过从闭合定位至断开来机械地促动这三个开关S1,S2,S3中的各个开关,从而导致停机。\n发明内容\n[0005] 因此,本发明的目的在于提供一种用于上述技术领域的监测装置,利用该监测装置,现在可主动地感测和/或监测机器人装置和机器人臂的特定位置,尤其是简化了对任何安全栅栏的需要,现在仅需要将其构造成对于接近和拾取是安全的。\n[0006] 该目的的实现方式由权利要求1的特征限定。如本发明阐明的那样,监测装置包括至少两个传感器和分配给传感器的传感器工作面,所述监测装置向机器人装置发送随一个传感器和/或另一个传感器处可获得的信号变化的启动信号以实现预定移动,且第一传感器限定为感测主支承件的水平位置和/或旋转位置,而第二传感器感测机器人臂的限定的水平位置,具体是其收缩的静止位置,且传感器工作面与用于第一传感器的机器人装置的选择性传感器工作面独立地布置在机器人装置的水平运动范围和/或回转范围中。\n[0007] 通过该设计,实现了如下基本要求:一方面使特征为至少两个运动轴的机器人装置的特定位置能够得到主动监测和/或感测,而另一方面触动机器人装置使得其仅可在预定范围中实现限定移动。\n[0008] 本发明的要点在于:一方面,现在使得有可能为第一传感器提供机器人装置的允许移动范围内的传感器工作面,机器人装置是有选择地且独立地布置的机器人装置,以便在触发第一传感器时,机器人装置自身且还有机器人臂两者都可移动,特别是延伸。除此之外,借助于第二传感器,现在可感测机器人臂的限定的水平定位,特别是在其收缩的静止位置上。通过评估两个传感器信号,现在可进行分辨机器人装置自身和/或机器人臂是否将移动,或机器人装置是否大体上被禁止进行任何移动,以便最终不可对操作者造成伤害。\n[0009] 与常规系统不同(其中,例如,光栅旨在防止机器人臂通过水平移动进入临界地带,以便机器人装置或机器人臂的任何运动在光栅一中断就停止),现在利用根据本发明的实现,确保了机器人装置或机器人臂可仅在指定的即安全的地带内执行任何水平移动,这还适于机器人臂的延伸,例如,这归因于由监测装置的缺陷元件或构件,防止对于涉及的任何人或操作者产生任何危险的情形,这是因为防止了机器人臂进入不予通过的地带。\n[0010] 应理解的是,不需要直接地监测机器人装置或其主支承件的水平位置,其现在改为还可间接地通过给出关于主支承件的水平位置的位置的指示的至少一个元件,主支承件例如可为机器人装置的基板或底脚。\n[0011] 在一个特别优选的实施例中,分配给第一传感器的对应的传感器工作面布置成固定于限定允许机器人装置实现某些移动的地带的位置上。\n[0012] 在替代的示例性实施例中,提供了分配给第一传感器的传感器工作面可动地布置在轴线上,其结果在于使某些元件例如门的位置可被探测到。\n[0013] 在监测装置的一个优选实施例中,提出了将独立的传感器至少构造为数字接近开关,数字接近开关在被触动时,使为1的输出信号可获得,总体上代表一种特别简单且成本低的解决方案。\n[0014] 在监测装置的另一个实施例中,提出了至少一个传感器为光学传感器,借助于光学传感器可使机器人装置的预定位置可被探测到。光学传感器具有的优点在于可在传感器与分配的传感器工作面之间产生大间距。\n[0015] 在另一个优选实施例中,监测装置包括连接到传感器上用于控制机器人装置的感测控制器,以便仅在第一传感器和/或第二传感器被触动时才宣布自由移动。此类感测控制器允许评估直接地影响机器人装置的运动的传感器信号。\n[0016] 作为优选,感测控制器控制机器人装置,使得不允许机器人臂的任何运动,直到触动第一传感器,因此使得能够确定基本上允许机器人臂在其内延伸的地带。\n[0017] 还优选的是,感测控制器控制机器人装置,使得仅在触动第二传感器时允许启动总体上的机器人装置的水平移动,因此确保了机器人装置仅在机器人臂收缩时才可移动。\n[0018] 作为优选,分配给第一传感器的传感器工作面仅布置在机器人臂的允许运动地带中,特别是在地板的区域中,且尤其是机械工具和/或其框的区域,因此使得机器人装置可以给送机械工具和/或其框。\n[0019] 作为优选,当机器人装置布置为静止的但可回转时,监测装置的特征在于布置在机器人装置的回转地带中且分配给第一传感器的弯曲传感器工作面,因此使得可以选择机器人装置的回转地带内的特定部分,基本上允许机器人臂在该特别部分内延伸。\n[0020] 作为优选,第二传感器布置在支承机器人臂的垂直滑块上,分配给第二传感器的传感器工作面布置在垂直滑块上,以在机器人臂一旦处于其收缩静止位置就在第二传感器处输出1信号,因此在机器人臂的收缩静止位置的监测中产生了特别简单的解决方案。\n[0021] 在用于监测布置成在一个方向(Y方向)上行进的机器人装置的水平位置的另一个优选实施例中,监测装置包括分配给第一传感器的平行于和/或横切于Y方向运行的传感器工作面,因此使得有可能设计简单且成本效益合算的传感器工作面来用于快速且简单的配合。\n[0022] 监测装置的另一个优选实施例用于监测和/或感测机器人装置的给定位置,机器人装置的主支承件借助于基板上的可旋转的底脚支承,至少两个传感器与彼此成一定角布置在基板上,且与所述传感器协作的传感器工作面布置成以便在主支承件的预定旋转位置触动一个传感器。这种变型特别适于机器人装置需要仅接近很少的位置时的情形。\n[0023] 对于监测用于在一个方向(Y方向)上行进的机器人装置,机器人装置的主支承件由基板上的可旋转的底脚支承,监测装置优选为具有在机器人装置的基板上与彼此成一定角的至少两个传感器,传感器与位于地板的区域中的传感器工作面协作,使得在Y方向上的机器人装置的预定转移位置上触动一个传感器。这在仅需要机器人装置接近很少的位置时是另一个简单的变型。\n[0024] 特别优选的是,监测装置用于监测机器人装置,机器人装置的机器人臂可在水平方向上和相对于主支承件仅沿轴线移位。在此类机器人装置的情况下,借助于第二传感器监测机器人臂的收缩水平位置特别简单。此外,机器人臂相对于主支承件的水平移动是可在屏障的方向上的运动,因此危及操作者。\n[0025] 本发明的另一个目的涉及提供监测装置,借助于该监测装置,现在可通过可靠地防止机器人装置且尤其是机器人臂执行远离框和机械工具的任何禁止的水平移动来安全地操作生产系统的机器人装置。\n[0026] 该目的通过设有监测装置的生产系统来完成,监测装置包括至少两个传感器,传感器工作面布置在借助于机器人装置待被给送的框或待被给送的机械工具的地带中,使得当机器人装置处于对应的框或对应的机械工具的装载地带或卸载地带中时,第一传感器由各个传感器工作面触动,而第二传感器布置在机器人装置上,使得可感测机器人臂的限定水平位置,特别是其收缩静止位置,因此确保了机械人装置能够仅在机械工具或框的地带中执行一定的移动。\n[0027] 在生产系统的一个优选实施例中,各个传感器工作面的水平范围选择成以便在传感器受触动时,机器人装置可行进预定量和/或围绕预定角回转,因此基本上确保机器人装置可移动到远至机器人装置可接近待被给送的框或机械工具的所有地带。\n[0028] 在生产系统的另一个优选实施例中,当机器人臂处于收缩静止位置时,第二传感器受触动,因此提高了系统的主动安全性。\n[0029] 作为优选,在生产系统的另一个有利实施例中,感测控制器将仅在两个传感器中的至少一个处于触动位置时才批准机器人装置的运动,这也提高了系统的主动安全性。\n[0030] 最后,在生产系统的另一个优选实施例中,提供了当两个传感器都未处于触动状态时立即否定借助于感测控制器的对机器人装置的运动的批准,因此确保了机器人装置即使在已经移动时也立即停止,防止了对操作者的任何危险。这种预防措施还在监测装置的一个元件中存在缺陷时禁止机器人装置的任何移动,同样最终有助于系统的主动安全性。\n[0031] 现在将在下文中且从权利要求书总体详细描述本发明的其它有利实施例和特征组合。\n附图说明\n[0032] 现在将参照附图来详细描述本发明,在附图中:\n[0033] 图1为按照现有技术构造的生产系统的自顶向下的视图;\n[0034] 图2为结合根据本发明的监测装置的第一实施例的如图1中所示的生产系统的自顶向下的视图;\n[0035] 图3为如图2中所示的生产系统的另一个自顶向下的视图;\n[0036] 图4为如图2中所示的生产系统的第一侧视图;\n[0037] 图5为如图2中所示的生产系统的另一个侧视图;\n[0038] 图6为结合根据本发明的监测装置的另一个实施例的另一个生产系统的自顶向下的视图;\n[0039] 图7为结合根据本发明的监测装置的替代实例示出的机器人装置的视图;\n[0040] 图7a为如图7中所示的部分的放大视图,\n[0041] 图7b为如图7中所示的部分的另一个放大视图,以及\n[0042] 图8为本发明的替代示例性实施例的视图。\n[0043] 应理解的是,图中的所有相同部分由相同的参考标号标示。\n[0044] 参考标号清单\n[0045] 1 生产系统\n[0046] 2 机械工具\n[0047] 3 框\n[0048] 4 栅栏围场\n[0049] 5 机器人装置\n[0050] 6 基板\n[0051] 7 底脚\n[0052] 8 主滑块\n[0053] 9 主支承件\n[0054] 10 垂直滑块\n[0055] 11 机器人臂\n[0056] 12 抓爪\n[0057] 13 工件\n[0058] 14 轨道\n[0059] 15 传感器\n[0060] 16 传感器\n[0061] 17 传感器工作面\n[0062] 18 传感器工作面\n[0063] 19 传感器工作面\n[0064] 20 轨道\n[0065] 21 感测控制器\n[0066] 22 连接线\n[0067] 23 箭头(Y方向)\n[0068] 24 箭头(C轴线)\n[0069] 26 传感器\n[0070] 27 传感器\n[0071] 28 传感器\n[0072] 29 传感器\n[0073] 30 传感器工作面\n[0074] 31 传感器工作面\n[0075] 32 框\n[0076] 33 传感器\n[0077] 34 传感器工作面\n[0078] 35 门\n[0079] 36a-c 传感器工作面\n[0080] 38 光束\n[0081] 39 滑块。\n具体实施方式\n[0082] 现在参看图1,示意性地示出按照现有技术构造的生产系统1的自顶向下的视图。\n例如,生产系统1包括机械工具2a、两个框3a,3b、栅栏围场4,以及机器人装置5。应理解的是,术语机器人装置在各种情况中用于代表操纵器的所有实施例。\n[0083] 框3a,3b用于容纳工具和/或工件。例如,涉及的机器可为(且并非确定性地列出)侵蚀、铣削、磨削、整丝机或车床。适合的机器人装置的实例为具有四个轴线的机器人装置,其联接元件(抓爪)可沿三个平移轴线X,Y和Z以及沿旋转轴线C移动。机器人装置5包括基板\n6,主支承件9借助于底脚7垂直地竖立在基板6上。垂直行进的滑块(未示出)安装在可围绕垂直轴线旋转的主支承件9上。水平行进的悬臂式机器人臂11安装在垂直滑块上,机器人臂\n11终止于抓爪12,抓爪12用于抓握和保持图示的工具和/或工件13(为了简单起见,下文简单地称为工件)。此外,虚线示出了主支承件9结合机器人臂11a、抓爪12a和工件13a的旋转位置。机器人臂11a相对于主支承件9的特别是在栅栏围场4的方向上的任何水平运动仅在单个轴线上产生,即,沿线性水平轴线。由于构造此类机器人装置的基础是已知的,故这里未包括进一步的细节。\n[0084] 布置在栅栏围场4内的机器人臂5特别用于将工件13给送至机械工具2a和从机械工具2a拾取工件13,它们从框3a,3b拾取和给送至框3a,3b。\n[0085] 由于覆盖面积的考虑,故栅栏围场4一般布置成在机器人装置的到达范围内尽可能远,其原因在于此类栅栏围场4需要构造为安全栅栏,其用于防止操作者的任何危险接近,然而同时确保机器人臂11或其抓爪12不会与一些工具或工件13一起穿透栅栏围场4。该需要是因为:如果该栅栏围场4未对应地构造成坚固的,则当机器人装置5与延伸的机器人臂11a一起旋转时,抓爪12a或任何工件13a可穿透栅栏围场4而构成对操作者的生命和肢体的潜在危险。鉴于转移中的高重量,尤其是由于通常的情况是工具和具体地工件重达100kg且更需要由普通机器人装置操纵,故应理解的是提供此类栅栏围场4的复杂性巨大。\n[0086] 现在参看图2,示出了结合根据本发明的监测装置的第一实施例的如图1中所示的生产系统的示意性自顶向下的视图。监测装置包括第一传感器15、第二传感器16、三个水平设置的传感器工作面17a,18a,18b,垂直设置的传感器工作面19,以及与传感器15,16且与机器人装置5如连接线22所示出连接的感测控制器21。第一传感器15布置在机器人装置5的基板6上,而第二传感器16固定到垂直滑块(未示出)上。\n[0087] 三个水平设置的传感器工作面17a,18a,18b独立于机器人装置布置成固定在地板的区域中,使得第一传感器15在机器人装置5旋转时大致沿对应的传感器工作面17a,18a,\n18b(即,对应的传感器工作面17a,18a,18b上方)行进,以便第一传感器15可与对应的传感器工作面17a,18a,18b协作。独立于机器人装置意味着传感器工作面17a,18a,18b并未布置在机器人装置自身上,因此未包括在机器人装置的移动中。\n[0088] 两个传感器15,16构造为数字接近开关,只要它们不在传感器工作面附近,在输出端处可获得信号UA 0。一旦违反了第一传感器15与相关联的传感器工作面17a,18a,18b之间的临界最小间距,则在第一传感器15的输出端处可获得信号UA 1。这种情形类似于第二传感器16与布置成垂直设置在机器人臂的端部处的传感器工作面19之间的情形。一旦机器人臂11停留在收缩静止位置,即,收缩至后部,则在第二传感器16的输出端处可获得信号1。\n然而,在此情形中,仅所述的一个传感器工作面19可与第二传感器16协作。第一传感器工作面17a构造成使得且布置在机械工具2a的前方使得当机器人装置5面对机械工具2a时触动第一传感器15。一旦触动第一传感器15,则感测控制器21启动机器人装置5,以便机器人臂\n11可移动来用于装载或卸载机械工具2a,尤其是以水平移动。在机械人臂11的收缩位置,即,当第二传感器16由分配的传感器工作面19触动时,机器人装置5可总体上沿一个方向(Y方向)水平行进,且可围绕垂直轴线(Z)轴线旋转。\n[0089] 第一传感器工作面17a具有一定长度,使得当触动第一传感器15时,机器人装置可面对机械工具2a围绕预定角回转,因此确保了安全接近机械工具2a的所有区域。这同样适用于布置成面对框3a,3b且还构造成弯曲/弧形的以允许机器人装置5围绕预定角的旋转/回转的两个传感器工作面18a,18b。\n[0090] 传感器优选为通过生成电磁场来作用于感应基座上,电磁场可由传感器工作面(即,导电金属形式的阻尼材料)影响。一旦传感器与所述传感器工作面(金属)之间的所限定的最小间距实现,则传感器15,16的输出信号UA从0变成1。由于存在用作接近开关的此类传感器的大量不同实施例以及影响由传感器发出的场的大量不同形状和材料,故本上下文仅涉及传感器和传感器工作面,应理解的是这旨在包括接近开关等的所有实施例。\n[0091] 作为优选,传感器工作面由对应地定位但在任何情况下都优选为被动地构造的金属片或金属涂层构成。\n[0092] 在如图2中所示的位置中,其中第一传感器15和第二传感器16两者定位在传感器工作面17a,19的触动区域,因此在所述两个传感器的输出端处可获得为1的信号UA。为了决定是否允许机器人装置5旋转和/或是否允许机器人臂11水平地延伸,感测控制器21测试为\n1的信号UA是否在所述两个传感器中的一者处可获得。当是这种情况(UA第一传感器+UA第二传感器≥1)时,机器人装置5可移动。但总是出现的情况是,仅在第一传感器和/或第二传感器处于触动状态时才启动任何移动,但这是操作中不应当出现的状态。\n[0093] 应理解的是,与第二传感器16协同的传感器工作面不必限定为"面",因为取决于所涉及的传感器,提供第二传感器16在接近时对其响应的物体、本体、点等就可能足够。但与第一传感器15协同的传感器工作面需要结合一定的表面面积,且因此需要一定范围。然而,应当然理解的是,此类面可由多个小区域或点构成。还应理解的是,除感应传感器之外,还有可能利用基于电容、磁、光学或超声波的传感器。\n[0094] 应理解的是,感测控制器21不必构造为单独的单元,而是其可为机器控制器的构件。\n[0095] 现在参看图3,示出了结合监测装置的如图2中所述的生产系统,机器人装置5绘制为在旋转位置,其中机器人臂11部分地延伸。由于第一传感器15未在传感器工作面17a,\n18a,18b的工作地带中,故仅允许机器人装置5回转,但也只有在机器人臂11处于收缩位置时,使得第二传感器16才由传感器工作面19触动。在如图3中所示的图示中,机器人臂11部分地延伸,然而其结果在于第二传感器16不再处于传感器工作面19的工作地带中。如果机器人臂11进一步延伸,则将存在其穿透栅栏围场4的风险,这需要完全肯定地禁止。这是为什么在如图3中所示的状态下机器人装置立即切换成停机的原因,因为两个传感器输出信号的相加结果为0(UA第一传感器+UA第二传感器=0),因此不再满足要求(UA第一传感器+UA第二传感器≥1)。当两个传感器输出信号相加结果为0时,这如错误信号所示那样立即停止机器人装置。\n[0096] 因此,总是会出现的情况为,监测装置固有地安全,因为传感器15,16中的至少一者必须具有为1的输出信号UA以完全允许机器人装置的任何运动。这确保了即使存在传感器中的故障、连接导线断路、软件故障等,也总是可防止机器人装置呈现禁止的操作条件或呈现对操作者危险的位置。\n[0097] 但是,通过评估传感器信号,可感测机器人装置的预定位置。\n[0098] 除如所述的框和机械工具之外,普通机器人装置还适用于装载和/或卸载装备站、装载站以及进料位置和出料位置,而这种详列不是结论性的。\n[0099] 现在参看图4,侧视图中示出了结合监测装置的突出元件的机器人装置。除主支承件9外,从该示图中清楚的是机器人装置5的垂直滑块10,特别是第一传感器15,16的布置以及传感器工作面17a,18b对传感器15,16的分配。第一传感器15借助于连接线22固定到机器人装置5的底脚7上。在使机器人装置5回转中,第一传感器15与底脚7一起旋转。传感器工作面17a,18b定向成大致水平的,即,平行于地板,它们借助于支承件固定在地板上,特定的间距垂直地存在于传感器工作面17a,18b与第一传感器15之间。第二传感器16固定到定向成大致垂直的机器人臂11的后侧上。分配给第二传感器16的传感器工作面19固定地连接到垂直滑块10上。在该实例中,第一传感器15由传感器工作面17a触动,而第二传感器16由传感器工作面19触动。这是为什么为1的信号UA在两个传感器15,16的输出端处可获得的原因。\n[0100] 现在参看图5,示出了如图4中所示的生产系统,其中机器人臂11绘制为在向前延伸位置,其中第一传感器15由传感器工作面17a触动,而第二传感器16未受触动,因为对应的传感器工作面19太远。这是为什么为1的信号UA施加于第一传感器15的输出端而为0的信号UA施加于第二传感器16的输出端的原因。\n[0101] 基本上,传感器且尤其也是第一传感器可布置在机器人装置的侧部上,传感器的传感器工作面如果需要也可垂直地或倾斜地定向。\n[0102] 现在参看图6,示出了结合生产系统的本发明的替代示例性实施例。在该实例中,生产系统包括机器人装置5、六个框3a-3f、两个机械工具2a,2b以及栅栏围场4。机器人装置\n5借助于其基板6布置在主滑块(未示出)上,用于在Y方向上水平行进,主支承件9可旋转地支承在基板6上。Y方向由双向箭头23示出,而围绕Z轴的旋转方向由另一个双向箭头24示出。除布置在机器人臂11的后端部处的垂直地定向的传感器工作面19之外,监测装置包括分别分配给机械工具2a,2b或框3a-3f中的一者的总共八个另外的传感器工作面17a,17b,\n18a-18f。除所述的传感器工作面之外,监测装置还包括两个传感器15,16以及感测控制器(未示出)。第一传感器15布置在机器人装置5的底脚7处,而第二传感器16固定到垂直滑块(未示出)上。机器人装置5示为在两个不同位置上。在左手位置,第一传感器15位于传感器工作面18b的上方。在该位置上,机器人臂11可接近对应的框3b以拾取或放置工件。机器人装置5的右手位置示出了机器人臂11收缩以便触动第二传感器16的位置,而第一传感器15未受触动,因为其位于传感器工作面17a,17b,18a-18f外。这导致了在第一传感器处可获得为0的信号UA,而在第二传感器处可获得为1的信号UA。由于两个传感器输出信号相加结果为1 (UA第一传感器+UA第二传感器=1),故机器人装置在此情况下可水平地行进和/或回转。\n[0103] 传感器工作面17a,17b,18a-18f水平地延伸至一定程度,使得当触动第一传感器\n15时,机器人装置5可在Y方向上沿对应的传感器工作面行进或回转,以便机器人装置5可无限制地接近对应的机械工具2a,2b,或对应的框3a-3f,且各个机械工具2a,2b以及各个框\n3a-3f可借助于机器人装置5安全地装载和卸载。\n[0104] 水平地定向的传感器工作面仅布置在基本上允许机器人装置或机器人臂的特定移动的地带中。参看本实例,水平定向的传感器工作面布置在框以及机械工具的区域中,以便在机器人装置位于面对框或机械工具中的一者时触动第一传感器。\n[0105] 水平地定向的传感器工作面具体用于限定一个地带,在该地带内允许机器人装置在水平方向上延伸其机器人臂。对于传感器和传感器工作面的协作,为1或0的信号的形式的数字响应是足够的,由此1信号启动机器人装置的移动(主动安全),而在0信号可获得时,不启动机器人装置的任何移动。\n[0106] 现在参看图7,示出了结合监测装置的替代示例性实施例的机器人装置5,而图7a绘出了如图7中所示的部分内的放大视图,且图7b为如图7中所示的部分的另一个放大视图。这里又借助于用作主滑块的其基板6,机器人装置5布置成用于在Y方向上沿轨道14行进,而主支承件9借助于底脚7可旋转地布置在基板6上。机器人臂11示为处于其延伸情形。\n除用于监测机器人臂11的水平位置的布置在垂直滑块10的后侧上的第二传感器16之外,监测装置还包括四个另外的传感器26,27,28,29以及若干传感器工作面19,30,31a,31b。布置在垂直滑块10的后侧上的传感器16设计成与布置在机器人臂11的后端上的传感器工作面\n19协作。 在该实例中,监测装置也包括感测控制器(为了不使图示杂乱而未示出)。\n[0107] 两个传感器26,28;27,29分别定位成相对于彼此偏移180°,在直径上与机器人装置5的底脚7相对。四个传感器26,27,28,29固定地连接到不与底脚7一起旋转的基板6上。这四个传感器26,27,28,29借助于支架连接到基板上,其中仅一个支架(前支架32)从图7a中显现。在施加于地板的传感器工作面31a,31b的方向上,面对底脚7的两个传感器26,27的电磁场方向引导向上,而背对底脚7的两个传感器28,29的电磁场方向引导向下。另一个传感器工作面30布置在底脚7上,该工作面30设计成与背对底脚7的两个传感器26,27协作。利用主支承件9的旋转,将引起底脚7与传感器工作面30一起旋转。机器人装置从如图7中所示的位置旋转穿过180°同样包括传感器工作面30旋转穿过180°,以便使后者如图7a中所示那样位于在第二传感器27上方。因此,在该示例性实施例中,可感测到机器人装置5的两个位置彼此旋转180°。应理解的是,在必要的情况下,例如,旋转穿过90°的机器人装置5的其它这种位置也可通过加入对应地布置的一个或多个传感器而感测到。作为优选,面向下的两个传感器28,29分配给布置在地板或轨道(未示出)上的传感器工作面31a,31b,主滑块可沿地板或轨道行进。\n[0108] 在如所示的示例性实施例中,在一个侧部上的两个传感器26和28或布置在另一个侧部上的两个传感器27和29必须具有为1的输出信号,以便机器人臂11可水平延伸。机器人臂11的后侧上的第二传感器16必须具有为1的输出信号,机器人装置才可在Y方向上行进。\n一旦第二传感器16具有为1的输出信号,机器人臂11就处于其收缩位置。一旦没有传感器具有为1的输出信号,则机器人装置立即停机且发出报警信号。\n[0109] 对于背对底脚7的两个外传感器28,29,提供的传感器工作面31a,31b布置在地板上,应理解的是,在此情况下仅绘出了这两个来作为实例。当机器人装置沿Y轴轴向地行进时,引起了布置在基板6上的传感器26-29以及传感器工作面30的移动,而传感器工作面\n31a,31b布置成固定到地板上。\n[0110] 固定地布置的传感器工作面的数目和位置取决于有多少框或机械工具需要借助于机器人装置装载和卸载。例如,在机械工具和/或框还与机器人装置5的行进方向横切或成角布置的情况下,另一个传感器(未示出)或另一个传感器工作面(未示出)可提供为布置成与如图所示的传感器或传感器工作面偏离例如45°或90°的预定角。当仅需要接近一些位置时,此类实施例是特别有利的。\n[0111] 现在参看图8,现在将阐释本发明的替代示例性实施例。这里,图8示出了作为结合本发明的替代示例性实施例的实例的另一个生产系统。与如图6中所示的示例性实例相似,生产系统现在包括机器人装置5,机器人装置5的主支承件9可旋转地支承在基板6上。基板6布置在主滑块39上以用于在水平方向(Y方向)上沿轨道20行进。除机器人装置5之外,生产系统包括机械工具2c和框32。与上文所述的示例性实施例的主要差别在于,第一传感器未构造为接近开关,且也未布置在地板附近,其改为固定到主支承件9的顶部,且构造为光学传感器装置,下文中称为传感器33。光学传感器33包括发射光的光模块,以及接收光的探测器模块(既未示出光模块也未示出探测器模块)。分配给光传感器33的第一传感器工作面34布置在机械工具2c上,而框32例如设有同样分配给光学传感器33的三个其它的传感器工作面36a,36b,36c。光学反射器用作传感器工作面36a,36b,36c,光学反射器在传感器或其探测器模块的方向上反射由传感器33或其光模块发射的光束38a。各个光反射器和探测器模块均针对彼此调节,以便探测器模块仅响应于从发射器发射且由光学反射器反射的光,或对其探测、将其滤出且对其评估。传感器工作面36a,36b,36c覆盖一定的面积,在该面积内,进入的光束在传感器33的方向上穿过大约180°反射。由于普通传感器装置是已知的,故这里未包括进一步的细节。此类传感器装置的一个实例为Leuze electronic公司制造的"SRK \n96"安全反射挡光板。\n[0112] 第一传感器工作面34布置在可在垂直方向上移动的门35上,门形成机械工具2c的构件。三个其它传感器工作面36a,36b,36c布置成固定在框32的各个推回位置32a,32b,32c上方的位置上。\n[0113] 传感器以及各个反射器优选为布置在操作接近地带(即,地板上方至少大约2m处)上方,以便操作者可在光束下方移动而不阻挡光束。\n[0114] 除光学传感器33之外,监测装置包括至少一个其它传感器。为接近开关形式的传感器16a可投入使用作为如上文已经阐释的另一个(第二)传感器。在该实例中,第二传感器\n16a固定到主支承件9上,而相关联的传感器工作面19a布置在机器人臂11的后侧上,使得一旦机器人臂11处于收缩静止位置,则为1的输出信号在第二传感器16a处可用。\n[0115] 此外,其它传感器和对应的工作面可如传感器15a所示出那样提供成布置在底脚和两个工作面18g,18h上。但在任何情况下,光学传感器33可与其它传感器确定地组合,以寻求各个应用情况中的最佳解决方案。\n[0116] 现在将具体连同光学传感器33来更详细地论述机器人装置5的功能。只要机器人臂11在后部静止位置,即,收缩后部位置,如由信号UA=1发出信号那样,机器人装置5可沿轨道20行进。所以,机器人装置5接收用于装载或卸载机器2c的启动信号,由传感器33发射的光束38必须由传感器33的探测器模块探测到。探测器模块在机器人装置5处于面对机器2c的预定位置时探测光束,以便使发射的光束38a从传感器工作面34沿探测器模块的方向反射。但为了这些发生,门35必须处于如图8中所示的UP启动位置。如果门35处于如门35'的指示虚线所示出的DOWN关闭位置,则即使在机器人装置5精确地定位成面对机器2c时,光束也不会从传感器工作面34'沿探测器模块的方向反射。这由于机器人装置5只有在门开启(即,UP)时才可接近机器2c,故这是传感器33和附加安全措施的另一个优点。\n[0117] 为了能够服务于框32,机器人装置5必须面对框32的三个推回位置32a,32b,32c中的一者。为了探测机器人装置5的正确的装载或卸载位置,三个推回位置32a,32b,32c中的各个位置都分配了传感器工作面36a,36b,36c。一旦机器人装置面对这三个推回位置32a,\n32b,32c中的一者,则从传感器发射的光沿探测器模块的方向反射,且启动机器人装置5,以便其可服务于对应的推回位置32a,32b,32c。\n[0118] 由于传感器工作面34,36a,36b,36c覆盖一定范围,故预定地带既水平地又垂直地实现,在该地带内,由传感器发射的光仍在探测器模块的方向上反射。特别是各个传感器工作面34,36a,36b,36c的水平范围允许机器人装置必须位于预定地带内的水平方向,以面对框32的各个推回位置32a,32b,32c,或面对机器2c,以便监测装置从传感器33接收启动信号来服务于机器或框。因此,可在各个传感器工作面34,36a,36b,36c的宽度上确定或改变该地带。\n[0119] 由于固定到主支承件上的传感器33的高度是固定的,故在各个传感器工作面34,\n36a,36b,36c的垂直范围上尤其必须补偿公差,如,机器人装置的任何机械游隙、材料的热膨胀等。\n[0120] 例如,如果没有传感器33可以以需要的高度安装到机械工具上,则可利用传感器\n15a。在需要的情况下,可提供可沿垂直方向移动的传感器33。\n[0121] 总的来说,因此将认识到的是,利用根据本发明构造的监测装置,现在可确保高安全的操作,同时使得能够简化安全栅栏,因为其现在仅用作对操作者的接近保护。现在此类安全栅栏不再需要构建成坚固的以便其必须总是甚至在最坏的情况下(即,在高机器人装置速度和高转移重量下)也能够防止机器人装置或机器人臂穿透。除此之外,现在可保持安全栅栏较低且较近,最终使得降低了成本。通过如阐释那样联结传感器信号和机器人装置控制器,现在确保了机器人装置或机器人臂不会到达安全栅栏附近而有其穿透的风险。因此,与现有安全栅栏相比,现在这可构建得简单、重量轻且成本效益合算。\n[0122] 根据本发明构造的监测装置特别适用于其上的机器人臂可仅在一个移动轴(特别是在水平线性轴)上水平行进的机器人装置。\n[0123] 应理解的是,术语传感器工作面旨在包括在接近时促使传感器的触动(切换动作)的所有器件。除例如与感应传感器相容的多种金属之外,其它传感器工作面(例如,举例来说,还如光学模式、磁性模式、声音模式)将与本发明相容。