著录项信息
专利名称 | 一种热塑性材料的焊接工艺及其实现装置 |
申请号 | CN201210425167.3 | 申请日期 | 2012-10-31 |
法律状态 | 暂无 | 申报国家 | 中国 |
公开/公告日 | 2013-02-20 | 公开/公告号 | CN102935719A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | B29C65/14 | IPC分类号 | B;2;9;C;6;5;/;1;4查看分类表>
|
申请人 | 宁波神通模塑有限公司 | 申请人地址 | 浙江省宁波市余姚市兰江街道谭家岭西路788号
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 神通科技集团股份有限公司 | 当前权利人 | 神通科技集团股份有限公司 |
发明人 | 方来仁;方立锋 |
代理机构 | 杭州杭诚专利事务所有限公司 | 代理人 | 林宝堂 |
摘要
本发明涉及焊接技术领域,尤其涉及一种新型热塑性材料的焊接工艺及其实现装置,解决了摩擦焊接的溢料、多粉尘对产品污染,对焊接结构要求、可应用材料范围的苛刻,焊接位置焊接性能的不均衡性,以及热板焊接粘料、污染、能耗大、操作环境恶劣等问题,其特征是将需焊接在一起的产品分别固定,通过辐射模块,对需要焊接的焊接筋部位进行局部的非接触式的辐射照射,再整型定位,即通过辐射以及保护气体热对流的方式将焊接筋熔化并将焊接筋的基体部分整体加热,撤走间辐射模具,将上下模具合模,待冷却后完成焊接。
1.一种热塑性材料的焊接工艺,其特征是将需焊接在一起的产品分别固定在上下模具上,模具按相互间的定位位置分别固定,然后,通过固定于可前后避位滑板上的辐射模具,对需要焊接的焊接筋部位进行局部的非接触式的辐射照射,再通过安装在辐射模具中的整形冷模结构对产品进行整型定位,保证每个产品固定位置的一致性,即通过辐射以及保护气体热对流的方式将焊接筋熔化并将焊接筋的基体部分整体加热;将产品需要加热焊接的部位,设置在辐射对流区间,相对加热焊接部位周围的辐射体表面涂覆反射层;完成后撤走中间辐射模具,将上下模具快速地合模在一起,熔料相互融合待冷却后完成零件的焊接。
2.根据权利要求1所述的一种热塑性材料的焊接工艺,其特征在于在辐射对流区间部位产品与辐射模具之间留有排气缝隙,在设有排气缝隙的辐射模具周边沿焊接筋部位设有若干个通气孔,用于在合模时将保护气体充入辐射对流区间,经保护气体的冲刷后并维持小流量的补充气体。
3.根据权利要求1或2所述的一种热塑性材料的焊接工艺,其特征在于按产品的不同材料设定各自的加热时间。
4.一种实现上述权利要求1至3任一项所述的热塑性材料的焊接工艺的装置,包括上模(1)、与上模(1)相对应的下模(2),以及位于上模和下模之间的辐射模具(3),其特征在于所述的辐射模具(3)与上模(1)下模(2)合模垂直方向设有芯轴(39),芯轴(39)的外部设有辐射体(38);沿上模(1)下模(2)合模方向设有脱模机构(31),脱模机构(31)置于整形冷模(33)之中,整形冷模(33)被辐射体(38)包裹其中。
5.根据权利要求4所述的一种装置,其特征在于所述的辐射体(38)内布有若干支电热管(37)。
6.根据权利要求4或5所述的一种装置,其特征在于所述的芯轴(39)内部设有气体通道,所述的气体通道与整形冷模(33)内部设有的气体通道相通。
7.根据权利要求6所述的一种装置,其特征在于所述的整形冷模(33)内部设有的气体通道出口,位于辐射体(38)朝产品(6)焊接筋部位的端面位置;在辐射体(38)端面上,沿产品(6)焊接部位的周围设有反射层(34)。
8.根据权利要求4或5所述的一种装置,其特征在于所述的辐射体(38)的上部与被焊接产品(6)的下部焊接部位设有间隙,辐射体(38)的下部与被焊接产品(6)的上部焊接部位设有间隙。
9.根据权利要求4或5所述的一种装置,其特征在于所述的整形冷模(33)的表面设有耐磨涂层(32)。
一种热塑性材料的焊接工艺及其实现装置\n技术领域\n[0001] 本发明涉及焊接技术领域,尤其涉及一种新型热塑性材料的焊接工艺及其实现装置。\n背景技术\n[0002] 目前,对于热塑性材料的焊接主要有以下几种方式:\n[0003] 一是摩擦焊接,一种较为先进的热塑性材料焊接工艺,分为振动摩擦焊接和旋转摩擦焊接,这种焊接方式主要是在需要焊接的零件之间,通过外加机械的线性振动或旋转方式,保持零件间的摩擦,产生热量融化材料达到所设位置后,瞬间停止机械动作并保持相对位置,待熔料凝固从而将零件焊接在一起,其缺点及局限性是:首先,因采用机械运动带动零件表面摩擦,其作用模式导致三个阶段出现问题。\n[0004] 第一阶段,还没到达熔化温度时摩擦会将材料磨成粉末状飞出,对加矿粉、玻纤类出现等增强材料尤甚,对洁净度要求较高的场合,此方式无法保证。\n[0005] 第二阶段,材料摩擦温度积聚瞬间达到半熔化、熔化温度,这时材料摩擦系数急剧下降,熔料在压力作用及振动力作用下横向飞出并快速凝固,对于熔点有差异的材料,由于熔点低的部分会先熔化,同时摩擦力的下降,熔点高的材料温度无法积聚而熔化,无法焊接在一起。要保证熔料空间、振动空间、挡料结构等,焊接结构的空间要求也大,而飞出的溢料在使用中容易脱落,同样对于有洁净度要求的场合很难处理,如发动机系统的塑料部件进气歧管、导风管等的焊接。\n[0006] 第三阶段,凝固时的任何微小机械运动都将影响材料凝固的效能,由于机械的惯性问题不可避免影响焊接性能的提升。\n[0007] 如专利公开号为CN101829845A的一种加热搅拌摩擦焊接方法,在搅拌摩擦焊接过程中,采用加热设备对工件进行持续加热直至完成焊接;以及如专利公开号为CN102284787A的一种电加热摩擦点焊搅拌头及其焊接方法,将高温电热圈套在搅拌头轴肩与夹持部位之间的区域,高温电热圈固定于用于夹持搅拌头的主机机构上,在搅拌摩擦点焊之前,采用高温电热圈对搅拌头进行加热,待搅拌头的温度升至被焊材料的再结晶温度以上并稳定时进行焊接,高温电热圈的加热温度保持不变至焊接过程结束。这几种方法都是摩擦焊接的一种示例。\n[0008] 其次,摩擦焊接的方式对产品的结构有一定要求,如在振动方向上焊接零件的表面与其角度差在10度角以内,与焊接方向角度差在60度以内且因此造成的侧向力过大也影响焊接性,这对于产品的结构设计来说是非常致命的,对于一个理论计算出来的理想模型,为保证工业化生产,必须对理想模型进行重复的修改,制约了新技术的提升。\n[0009] 二是热板焊接,一种应用普遍的传统焊接工艺,通过加热到一定温度的热模将需要焊接的零件表面直接加热融化,然后撤掉热模,将需要焊接的零件合在一起施压,待熔接处的材料凝固后完成焊接,因熔接处的材料经过较大范围的熔化,故熔接效果及均衡性好。\n但是,这种焊接方式采用一整块加热盘通过直接与被焊接件接触,加热面积大,热损失、能耗大及操作环境差。通过直接把材料融化,形成一定的熔融区域用于熔接,这也是热板焊接的问题所在,热板温度比材料熔点要高一部分,与零件接触后材料会黏在热模上,会导致材料分解、变质,产生许多有害气体及在热模上积料,分解碳化后的粘料将影响焊接性能,热模清理难度大且无法清理彻底。因粘料的状况无法解决,在针对增强类材料,如玻纤、矿粉等热塑性材料的焊接上,热模的粘料状况将是制约焊接性能的瓶颈,焊接稳定性很差、质量无法保证。\n发明内容\n[0010] 本发明的目的是为了解决上述摩擦焊接的溢料、多粉尘对产品污染,对焊接结构要求、可应用材料范围的苛刻,焊接位置焊接性能的不均衡性,以及热板焊接粘料、污染、能耗大、操作环境恶劣等问题,提供一种设计合理,效果明显的新型热塑性材料的焊接工艺及其实现装置。\n[0011] 本发明的上述技术问题主要是通过下述技术方案得以解决的:一种新型热塑性材料的焊接工艺,其特征是将需焊接在一起的产品分别固定在上下模具上,模具按相互间的定位位置分别固定,然后,通过固定于可前后避位滑板上的辐射模具,对需要焊接的焊接筋部位进行局部的非接触式的辐射照射,再通过安装在辐射模中的整形冷模结构对产品进行整型定位,保证每个产品固定位置的一致性,即通过辐射以及保护气体热对流的方式将焊接筋熔化并将焊接筋的基体部分整体加热;完成后撤走中间辐射模具,将上下模具快速地合模在一起,熔料相互融合待冷却后完成零件的焊接。\n[0012] 上下模具可以是多个组合模的复合模,上下模具由油压机或机械驱动,设压力、时间控制装置,辐射模具外形按产品设计,加热时间通过调节控制装置设定;上下模具按相互配合的定位位置固定;一般对于热塑性材料的焊接,均设有焊接筋部,局部非接触式辐射照射对产品本身尺寸影响很少,变形也少,耗能针对性强,浪费少,且被焊接部位不受摩擦等外力影响,无飞溅灰尘。本方法可以按不同材料设定各自的加热时间,适用范围广,按零件设计要求设置合模深度并保持一定的压力完成焊接。\n[0013] 本方法作为一种热塑性材料的连接、焊接方式,尤其适用于要求强度高、密封性能好、各焊接位置力学性能均匀的同种材料或不同种类材料间的焊接,焊接位置的熔接应力位置均匀且内应力小,并可解决各方向优于60度的焊接角,大大提高了工艺的应用范围。\n[0014] 作为优选,所述的在产品需要加热焊接的部位,设置在辐射对流区间,相对加热焊接部位周围的辐射体表面涂覆反射层。在加热部位,根据产品的结构设置一定的辐射对流区间;反射层直接把热量反射,起着均匀保温作用。\n[0015] 作为优选,所述的在辐射区部位产品与辐射模具之间留有排气缝隙,在设有排气缝隙的辐射模周边沿焊接筋部位设有若干个通气孔,用于在合模时将保护气体充入辐射区间,经保护气体的冲刷后并维持小流量的补充气体。排气缝隙的设置,并在辐射模周边沿焊接筋部位隔一段距离排列设置通气孔,用于在合模时将保护气体充入辐射区间,通过一段时间的保护气体冲刷后,维持小流量的补充气体,将加热部位处于低氧含量的环境中进行辐射加热,以提高热量的积聚量,减少材料的氧化分解保持熔融材料的物理性能。\n[0016] 作为优选,所述的按产品的不同材料设定各自的加热时间。选择性强,适用范围大。\n[0017] 一种实现以上所述的热塑性材料的焊接工艺的装置,包括上模、与上模相对应的下模,以及位于上模和下模之间的辐射模具,其特征在于所述的辐射模具与上模下模合模垂直方向设有芯轴,芯轴的外部设有辐射体;沿上模下模合模方向设有脱模机构,脱模机构置于整形冷模之中,整形冷模被辐射体包裹其中。上模、下模与产品的接触面均涂有耐磨涂层,上模、下模一般设计为上下方向移动,一是容易对产品施压,二是方便脱模。辐射模具是移动模,其中,整形冷模对产品不焊接部位进行以块面积方式定位,以保证产品要受压过程中保持自身尺寸数据,并对产品起到整型作用,使每个产品固定位置一致。\n[0018] 作为优选,所述的辐射体内布有若干支电热管。由电热管对辐射体进行加热,温度、加热时间由电气控制器调节。\n[0019] 作为优选,所述的芯轴内部设有气体通道,所述的气体通道与整形冷模内部设有的气体通道相通。气体通道中通保护气体,保护气体可以对辐射区进行预设时段冲刷,又可维持小流量的补充气体。\n[0020] 作为优选,所述的整形冷模内部设有的气体通道出口,位于辐射体朝产品焊接筋部位的端面位置;在辐射体端面上,沿产品焊接部位的周围设有反射层。保护气体直接吹击在焊接辐射区。反射层有利于热辐射的效能充分利用。\n[0021] 作为优选,所述的辐射体的上部与被焊接产品的下部焊接部位设有间隙,辐射体的下部与被焊接产品的上部焊接部位设有间隙。利用辐射体在辐射区内对产品进行非接触式的照射及保护气体的导热对流。\n[0022] 作为优选,所述的整形冷模的表面设有耐磨涂层。耐磨涂层减少模具工作面磨损,提高模具使用寿命。\n[0023] 本实用新型的有效效果是:适用于强度要求高、密封性能好、各焊接位置力学性能均匀的同种材料或不同种材料间的焊接,熔接部位均匀且内应力小,环保无粉尘污染,能解决各方向优于60度的焊接角。\n附图说明\n[0024] 图1是本发明一种结构示意图。\n[0025] 图2是本发明的一种上模、下模实施例结构示意图。\n[0026] 图3是本发明的一种辐射模具结构示意图。\n[0027] 图4是本发明的一种加热辐射工作状态结构示意图。\n[0028] 图5是本发明图4的局部放大结构示意图。\n[0029] 图6是本发明的一种上模、下模合压成型结构示意图。\n[0030] 图7是本发明图6的局部放大示意图。\n[0031] 图中:1. 上模,11. 上固定模,12. 上定位模,2. 下模,21. 下定位模,22. 下固定模,3. 辐射模具,31. 脱模机构,32. 耐磨涂层,33. 整形冷模,34. 反射层,35. 隔热层,36. 保温涂层,37. 电热管,38. 辐射体,39. 芯轴,4. 上辐射区,5. 下辐射区,6. 产品。\n具体实施方式\n[0032] 下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。\n[0033] 本实施例的一种热塑性材料的焊接工艺,将需焊接在一起的产品分别固定于上模、下模上,上模、下模按相互间的配合位置分别固定在上定位模和下定位模上,然后通过固定在一件可前后避位的滑板上的仿形辐射模具,对需要焊接的筋部进行局部的非接触式的辐射照射(辐射模具按所焊接的材料不同来设定保持功率);继而由安装在辐射模具上的仿形整形冷模结构对产品进行整型定位,以保证每个产品一致性。在产品需要加热的部位,设置辐射对流区间,在辐射模辐射体与产品相对应的表面上,沿加热焊接部位周围涂覆反射层,并在辐射空间部位留一条排气缝隙,在排气缝隙的辐射模一周,沿焊接筋部位留一定的空间距离设置通气孔,用于在合模时将保护气体充入辐射区,通过一段时间保护气体的冲刷后并维持小流量的补充气体,将加热部位处于低氧含量的环境中进行辐射加热。通过辐射及保护气体热对流的方式将焊接筋熔化并将焊接筋的基体部分整体加热,提高热量的积聚量,减少材料的氧化分解保持熔融材料的物理性能。完成后撤走辐射模具,将上模下模快速地合模在一起,熔料相互融合冷却后完成零件的焊接。\n[0034] 参见图1,一种实现热塑性材料焊接工艺的装置,主要由上模1、下模2、辐射模具\n3组成,上模1和下模2沿上下垂直动作,辐射模具3具有水平移动和以芯轴为轴心转动功能。\n[0035] 上模1包括上固定模11、上定位模12,产品6焊接前的上半部分定位固定在上定位模12上,下模2包括下定位模21、下固定模22,产品6焊接前的下半部分定位固定在下定位模21上,如图2所示。\n[0036] 参见图3,辐射模具3水平设有芯轴39,芯轴39的外部设有辐射体38,与芯轴38垂直设有脱模机构31,脱模机构31穿设在整形冷模33的中间部位,整形冷模33又被辐射体38包裹其中,整形冷模33和辐射体38之间设有隔热层,辐射体38表面设有保温涂层。\n辐射体38内设有电热管37,电热管37以脱模机构31中心线为轴绕缠在辐射体38中。辐射体38的上、下部与被焊接产品6的焊接部位均设有间隙,如图5所示。\n[0037] 芯轴39内部沿轴向设有气体通道,整形冷模33内部也设有气体通道,两部件的气体通道相通。整形冷模33一周朝排气缝隙方向设有10个气体通气出口,该通气出口正对于辐射体38朝产品6焊接筋部位的端面位置,即上辐射区4和下辐射区5部位,如图4所示部位。辐射体38朝产品6焊接部位方向的端面上除辐射加热区之外均涂上反射层34,整形冷模3的表面设有耐磨涂层32。\n[0038] 图4是合模对产品进行辐射加热的工作状态示意图,合模后利用氮气保护气体对上辐射区4和下辐射区5进行预设时段冲刷,之后维持小流量的补充气体,由辐射体8在上、下辐射区内对产品6进行非接触式的照射及保护气体的导热对流,并采用反射层34材料,加强区域内的辐射强度,在保护气体氛围下快速使焊接筋处于熔融状态。\n[0039] 上模1、下模2合压成型以及冷却熔接状态如图6、图7所示,经过辐射加热过程后,利于伺服控制系统快速撤走辐射模具3,并将产品6的上、下两部分合模在一起,其行程按产品结构要求预设,使上、下两部分熔料均衡的相互融合,通过冷却完成整个焊接。\n[0040] 上述实施例是对本发明的说明,不是对本发明的限定,任何对本发明的简单变换后的结构、工艺均属于本发明的保护范围。
法律信息
- 2019-01-18
专利权人的姓名或者名称、地址的变更
专利权人由宁波神通模塑有限公司变更为神通科技集团股份有限公司
地址由315408 浙江省宁波市余姚市谭家岭西路788号变更为315408 浙江省宁波市余姚市兰江街道谭家岭西路788号
- 2015-04-29
- 2013-03-27
实质审查的生效
IPC(主分类): B29C 65/14
专利申请号: 201210425167.3
申请日: 2012.10.31
- 2013-02-20
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2012-07-25
|
2012-03-09
| | |
2
| |
2012-08-08
|
2012-04-12
| | |
3
| |
2012-10-24
|
2012-06-21
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |