著录项信息
专利名称 | 定位系统及车载装置 |
申请号 | CN200880115870.6 | 申请日期 | 2008-11-13 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2010-10-06 | 公开/公告号 | CN101855518A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G01C21/26 | IPC分类号 | G;0;1;C;2;1;/;2;6;;;G;0;1;S;1;9;/;4;2查看分类表>
|
申请人 | 富士通天株式会社 | 申请人地址 | 日本兵库县
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 富士通天株式会社 | 当前权利人 | 富士通天株式会社 |
发明人 | 井上典昭 |
代理机构 | 中科专利商标代理有限责任公司 | 代理人 | 李贵亮 |
摘要
本发明涉及的定位系统构成为,车载装置具备:车载侧定位机构,其取得包含对定位的坐标进行表示的车载侧定位坐标的车载侧定位数据;和发送机构,其将车载侧定位机构取得的车载侧定位数据向便携终端装置发送;便携终端装置具备:携带侧定位机构,其取得包含对定位的坐标进行表示的携带侧定位坐标的携带侧定位数据;选择机构,其根据定位环境,选择车载侧定位机构及/或携带侧定位机构;和车辆位置计算机构,其根据与由选择机构选择的定位机构相关的定位坐标,计算出车辆位置。
1.一种定位系统,利用搭载于车辆的车载装置和便携终端装置来定位车辆位置,其特征在于,
所述车载装置具备:
车载侧定位机构,其取得车载侧定位数据,该车载侧定位数据包含从卫星定位系统接收的信号中所包含的对定位的坐标进行表示的车载侧定位坐标;和
发送机构,其将所述车载侧定位机构取得的所述车载侧定位数据向所述便携终端装置发送;
所述便携终端装置具备:
携带侧定位机构,其取得携带侧定位数据,该携带侧定位数据包含从卫星定位系统接收的信号中所包含的对定位的坐标进行表示的携带侧定位坐标;
选择机构,其根据定位环境,选择所述车载侧定位数据及/或所述携带侧定位数据;和车辆位置计算机构,其根据由所述选择机构选择的定位数据,计算出所述车辆位置,所述选择机构判定所述便携终端装置在乘车后在所述车内是否经过了规定时间以上,在经过了规定时间以上的情况下,判定行驶速度是否在规定速度以上,在行驶速度在规定速度以上的情况下优先使用车载侧定位数据,在没有经过规定时间以上的情况以及行驶速度比规定速度慢的情况下判定携带侧的定位精度是否在规定精度以上,在携带侧的定位精度在规定精度以上的情况下优先使用携带侧定位坐标,在携带侧的定位精度未在规定精度以上的情况下优先使用车载侧定位坐标。
2.根据权利要求1所述的定位系统,其特征在于,
所述车载侧定位数据及所述携带侧定位数据分别包含对与定位相关的精度进行表示的定位精度,
所述选择机构还在所述车载侧定位数据及所述携带侧定位数据的任一个的定位精度都在规定值以上的情况下,选择所述车载侧定位数据及所述携带侧定位数据双方,在所述选择机构选择了所述车载侧定位数据及所述携带侧定位数据双方的情况下,所述车辆位置计算机构通过利用了所述定位精度的加权,计算出所述车载侧定位数据及所述携带侧定位数据的加权平均,作为所述车辆位置。
3.根据权利要求1所述的定位系统,其特征在于,
所述车载侧定位数据及所述携带侧定位数据分别包含与定位相关的卫星信息,所述车载装置的所述车载侧定位机构在所述车载侧定位数据中包含的所述卫星信息无效的情况下,使用从所述便携终端装置取得的所述卫星信息进行定位,所述便携终端装置的所述携带侧定位机构在所述携带侧定位数据中包含的所述卫星信息无效的情况下,使用从所述车载装置取得的所述卫星信息进行定位。
4.一种车载装置,与便携终端装置协作来定位车辆位置,其特征在于,具备:
车载侧定位机构,其取得车载侧定位数据,该车载侧定位数据包含从卫星定位系统接收的信号中所包含的对定位的坐标进行表示的车载侧定位坐标;
接收机构,其接收携带侧定位数据,该携带侧定位数据包含所述便携终端装置从卫星定位系统接收的信号中所包含的对定位的坐标进行表示的携带侧定位坐标;
选择机构,其根据定位环境,选择所述车载侧定位数据及/或所述携带侧定位数据;和车辆位置计算机构,其根据由所述选择机构选择的定位数据,计算出所述车辆位置,所述选择机构判定所述便携终端装置在乘车后在所述车内是否经过了规定时间以上,在经过了规定时间以上的情况下,判定行驶速度是否在规定速度以上,在行驶速度在规定速度以上的情况下优先使用车载侧定位数据,在没有经过规定时间以上的情况以及行驶速度比规定速度慢的情况下判定携带侧的定位精度是否在规定精度以上,在携带侧的定位精度在规定精度以上的情况下优先使用携带侧定位坐标,在携带侧的定位精度未在规定精度以上的情况下优先使用车载侧定位坐标。
定位系统及车载装置 \n技术领域\n[0001] 本发明涉及利用搭载于车辆的车载装置和便携终端装置来对车辆位置进行定位的定位系统及车载装置,尤其涉及一种能够使车辆行驶时的定位精度提高的定位系统及车载装置。 \n[0002] 背景技术\n[0003] 公知有一种利用GPS(Global Positioning System)定位功能、螺旋仪、车速传感器等来算出当前位置,将自身车辆位置与周边道路、建筑物的地图信息合成,显示到显示器的车辆用导航系统。 \n[0004] 另外,伴随着移动电话、PDA(Personal Digital Assistant)等便携终端装置的性能提高,在这些便携终端装置中也实现了具备GPS定位功能的步行者用导航系统。 [0005] 而且,进行了通过将具有步行者用导航功能的便携终端装置、与具有车辆用导航功能的车载装置连接,来提高乘车者的便利性的尝试。例如,专利文献1中公开了下述技术:在乘车者下车之际,通过从车载装置向便携终端装置发送导航信息,由此,即使在车外也能够继续进行到达目的地为止的导航。 \n[0006] 专利文献1:日本特开2002-181555号公报 \n[0007] 但是,虽然专利文献1的技术将车辆装置的GPS定位功能与便携终端装置的GPS定位功能组合,但只不过是切换双方的GPS定位功能来使用。即,专利文献1的技术是在行驶时使用被调整成车辆的行驶速度的车载GPS定位功能,在步行时使用被调整成利用者的步行速度的便携用GPS定位功能的技术。 \n[0008] 这样,便携用GPS定位功能通常情况下无法在车辆的行驶时使用。这是由于一般认为便携用GPS定位功能的精度比车载用GPS定位功能的精度差。但是,车载用GPS定位功能及便携用GPS定位功能的精度互有长 短,不能断言便携用GPS定位功能的精度一定差。 [0009] 例如,在对便携用GPS定位功能和车载用GPS定位功能进行比较的情况下,便携用GPS定位功能还具有灵敏度高、抗遮蔽能力强这一优点。其原因在于,以在室内使用便携用GPS定位功能的情况为前提,为了还能够接收到S/N比(Signal to Noise ratio)低的部分的卫星电波而具有足够的滤波器,而且,大多情况下经由网络从服务器装置接收GPS定位用的辅助信息,与GPS定位中使用的辅助GPS(AGPS)对应。 \n[0010] 鉴于上述情况,目前面临的课题是如何实现当车辆行驶时,在车载用GPS定位功能的基础上使用便携用GPS定位功能,从而能够提高车辆行驶时的定位精度的定位系统或车载装置。 \n[0011] 发明内容\n[0012] 本发明的目的在于,提供一种使用车载用GPS定位功能的定位结果及便携用GPS定位功能的定位结果,使车辆行驶时的定位精度提高的定位系统及车载装置。 [0013] 本发明的第一方式涉及的定位系统,利用搭载于车辆的车载装置和便携终端装置来定位车辆位置,其特征在于,所述车载装置具备:车载侧定位机构,其取得车载侧定位数据,该车载侧定位数据包含对定位的坐标进行表示的车载侧定位坐标;和发送机构,其将所述车载侧定位机构取得的所述车载侧定位数据向所述便携终端装置发送;所述便携终端装置具备:携带侧定位机构,其取得携带侧定位数据,该携带侧定位数据包含对定位的坐标进行表示的携带侧定位坐标;选择机构,其根据定位环境,选择所述车载侧定位数据及/或所述携带侧定位数据;和车辆位置计算机构,其根据由所述选择机构选择的定位数据,计算出所述车辆位置。 \n[0014] 而且,本发明的第二方式涉及的车载装置,与便携终端装置协作来定位车辆位置,其特征在于,具备:车载侧定位机构,其取得车载侧定位数据,该车载侧定位数据包含对定位的坐标进行表示的车载侧定位坐标;接收机构,其接收携带侧定位数据,该携带侧定位数据包含对所述便携终端装置定位的坐标进行表示的携带侧定位坐标;选择机构,其根据定位环境,选择所述车载侧定位数据及/或所述携带侧定位数据;和车辆位置计算机 构,其根据由所述选择机构选择的定位数据,计算出所述车辆位置。 \n[0015] 并且,本发明的第三方式涉及的定位系统,利用搭载于车辆的车载装置和便携终端装置来定位车辆位置,其特征在于,所述车载装置具备:车载侧定位机构,其取得对定位的坐标进行表示的车载侧定位坐标及对与该定位相关的精度进行表示的车载侧定位精度;\n和发送机构,其将所述车载侧定位机构取得的所述车载侧定位坐标及所述车载侧定位精度,向所述便携终端装置发送;所述便携终端装置具备:携带侧定位机构,其取得对定位的坐标进行表示的携带侧定位坐标及对与该定位相关的精度进行表示的携带侧定位精度;和车辆位置计算机构,其根据所述车载侧定位精度及所述携带侧定位精度,从所述车载侧定位坐标及所述携带侧定位坐标计算出所述车辆位置。 \n[0016] 另外,本发明的第四方式涉及的车载装置,与便携终端装置协作来定位车辆位置,其特征在于,具备:车载侧定位机构,其取得对定位的坐标进行表示的车载侧定位坐标及对与该定位相关的精度进行表示的车载侧定位精度;接收机构,其接收对所述便携终端装置定位的坐标进行表示的携带侧定位坐标及对与该定位相关的精度进行表示的携带侧定位精度;和车辆位置计算机构,其根据所述车载侧定位精度及所述携带侧定位精度,从所述车载侧定位坐标及所述携带侧定位坐标计算出所述车辆位置。 \n[0017] 根据本发明的第一方式,由于车载装置取得包含对定位的坐标进行表示的车载侧定位坐标的车载侧定位数据,将所取得的车载侧定位数据向便携终端装置发送,便携终端装置取得包含对定位的坐标进行表示的携带侧定位坐标的携带侧定位数据,根据定位环境选择车载侧定位数据及/或携带侧定位数据,并根据所选择的定位数据计算出车辆位置,所以,通过选择与定位环境对应的定位数据,可以起到使车载用GPS定位功能及携带用GPS定位功能相互补充,从而提高车辆行驶时的定位精度这一效果。 \n[0018] 而且,根据本发明的其他方式,由于取得包含对定位的坐标进行表示的车载侧定位坐标的车载侧定位数据,将所取得的车载侧定位数据向便携终端装置发送,接收包含对便携终端装置定位的坐标进行表示的携带侧定位坐标的携带侧定位数据,根据定位环境选择车载侧定位数据及/或携带侧定位数据,并根据所选择的定位数据计算出车辆位置,所以,通过选择与 定位环境对应的定位数据,可以起到利用携带用GPS定位功能补充车载用GPS定位功能,从而提高车辆行驶时的定位精度这一效果。 \n[0019] 并且,根据本发明的其他方式,由于车载装置取得对定位的坐标进行表示的车载侧定位坐标、及对与定位相关的精度进行表示的车载侧定位精度,将取得的车载侧定位坐标及车载侧定位精度向便携终端装置发送,便携终端装置取得对定位的坐标进行表示的携带侧定位坐标、及对与定位相关的精度进行表示的携带侧定位精度,根据车载侧定位精度及携带侧定位精度,由车载侧定位坐标及携带侧定位坐标计算出车辆位置,所以,通过对应于定位精度的高低,根据车载侧定位坐标及携带侧定位坐标计算出车辆位置,可以起到使车载用GPS定位功能及携带用GPS定位功能相互补充,从而提高车辆行驶时的定位精度这一效果。 \n[0020] 另外,根据本发明的其他方式,由于取得对定位的坐标进行表示的车载侧定位坐标、及对与定位相关的精度进行表示的车载侧定位精度,接收对便携终端装置定位的坐标进行表示的携带侧定位坐标、及对与定位相关的精度进行表示的携带侧定位精度,并根据车载侧定位精度及携带侧定位精度,从车载侧定位坐标及携带侧定位坐标计算出车辆位置,所以,通过对应于定位精度的高低,根据车载侧定位坐标及携带侧定位坐标计算出车辆位置,可以起到利用携带用GPS定位功能补充车载用GPS定位功能,从而提高车辆行驶时的定位精度这一效果。 \n[0021] 附图说明\n[0022] 图1是表示实施例1涉及的定位系统的概要的图。 \n[0023] 图2是表示实施例1涉及的车载装置及便携终端装置的构成的框图。 [0024] 图3是表示基于定位精度的选择处理的处理步骤的流程图。 \n[0025] 图4是表示基于便携终端装置在车内存在的经过时间、及行驶速度的选择处理的处理步骤的流程图。 \n[0026] 图5是表示基于便携终端装置在车内存在的经过时间、行驶速度及定位精度的选择处理的处理步骤的流程图。 \n[0027] 图6是表示实施例2涉及的车载装置及便携终端装置的构成的框图。 [0028] 图7是表示便携终端装置中的定位开始处理的处理步骤的流程图。 [0029] 图8是表示车载装置中的定位开始处理的处理步骤的流程图。 \n[0030] 图9是表示实施例3涉及的系统的概要的图。 \n[0031] 图10是表示实施例3涉及的车载装置及便携终端装置的构成的框图。 [0032] 图11是表示实施例3涉及的定位系统所进行的处理步骤的概要的流程图。 [0033] 图12是表示与方位相关的系统误差信息的蓄积处理步骤的流程图。 [0034] 图13是表示与区域相关的系统误差信息的蓄积处理步骤的流程图。 [0035] 图14是表示系统误差信息的利用处理步骤的流程图。 \n[0036] 图15是表示实施例4涉及的车载装置及便携终端装置的构成的框图。 [0037] 图16是表示实施例4涉及的定位系统所进行的处理步骤的概要的流程图。 [0038] 图中:1-定位系统,10、10a-车载装置,11-GPS天线,12-显示器,13-通信部,\n14-控制部,14a-GPS接收部,14b-车辆信号发送部,14c-显示处理部,15-存储部,15a-卫星信息,20、20a-便携终端装置,21-GPS天线,22-通话用天线,23-通信部,24-控制部,\n24a-GPS接收部,24b-辅助信息接收部,24c-计算方法选择部,25-存储部,25a-卫星信息,\n1a-定位系统,100、100a-车载装置,110-GPS天线,120-显示器,130-通信部,140-控制部,140a-GPS接收部,140b-显示处理部,150-存储部,150a-系统误差信息,200、200a-便携终端装置,210-GPS天线,220-通话用天线,230-通信部,240-控制部,240a-GPS接收部,\n240b-辅助信息接收部,240c-误差修正部,250-存储部,250a-系统误差信息,250b-地图信息。 \n[0039] 具体实施方式\n[0040] 下面参照附图,对本发明涉及的定位系统的优选实施例1~实施例4进行详细说明。其中,在实施例1中,对定位系统的基本构成进行说明;在实施例2中,对在车载装置及便携终端装置中共用卫星信息的情况进行说明;在实施例3中,对便携终端装置保持后述的系统误差信息的情况进行说明;在实施例4中,针对使车载装置也保持系统误差信息的情况进行说明。另外,在以下所示的各实施例中,对使用移动电话作为便携终端装 置的情况进行说明,但也可以使用PDA(Personal Digital Assistant)或笔记本型电脑等能够携带的终端装置。 \n[0041] 实施例1 \n[0042] 图1是表示实施例1涉及的定位系统的概要的图。如该图所示,实施例1涉及的定位系统1由具备GPS(Global Positioning System)定位功能(以下记作“车载侧GPS功能”)的车载装置10、和具备GPS定位功能(以下记作“携带侧GPS功能”)的便携终端装置20构成。 \n[0043] 这里,相对于车载侧GPS功能具备只使用卫星电波中S/N比高的部分的滤波构成,携带侧GPS功能具备还使用S/N比低的部分的滤波构成。因此,由于车载侧GPS功能与携带侧GPS功能相比,虽然灵敏度低,但滤波构成简单,所以,能够实现高速的信息处理,且由于可缩短定位周期,所以适用于高速移动时的定位。另一方面,由于携带侧GPS功能与车载侧GPS功能相比,虽然灵敏度高,但滤波构成复杂,所以,定位周期变长,适用于低速移动时的定位。 \n[0044] 另外,由于携带侧GPS功能以在室内中的使用为前提,所以,如上所述其灵敏度高,经由网络从服务器装置接收GPS定位用的辅助信息,与GPS定位中使用的辅助GPS(AGPS)对应,因此,即便是如车内那样的封闭环境,也能够进行高精度的定位。 [0045] 各GPS功能通过从多个GPS卫星接收卫星电波来进行定位处理,此时,可以根据各GPS卫星的位置关系来取得成为GPS定位的精度劣化的指标的数值、即DOP(Dilution Of Precision)值。因此,能够将该DOP值用作定位精度。其中,下面将车载装置10的定位精度记作“车载侧定位精度”,将便携终端装置20的定位精度记作“携带侧定位精度”。而且,将车载装置10计算出的定位坐标记作“车载侧定位坐标”,将便携终端装置20计算出的定位坐标记作“携带侧定位坐标”。 \n[0046] 而且,如上所述,车载侧GPS功能适用于高速移动,而携带侧GPS功能适用于低速移动。因此,在如刚坐上车那样车辆停止的情况、车辆速度为低速的情况下,携带侧GPS功能能够进行高精度的定位。并且,当在车外使用了携带侧GPS功能的人携带着便携终端装置20乘上车时,由于携带侧GPS功能已经取得了与GPS卫星的轨道等相关的信息(卫星信息), 所以,携带侧GPS功能的定位精度稳定。 \n[0047] 由此,在实施例1涉及的定位系统1中,根据便携终端装置20在车内存在的经过时间、车辆速度、各GPS功能的定位精度等定位环境,选择携带侧GPS功能及车载侧GPS功能中的一个、或携带侧GPS功能及车载侧GPS功能双方,计算出车辆位置。 [0048] 具体而言,车载装置10将包括车载侧定位坐标、车载侧定位精度、车辆速度及便携终端装置20在车内存在的经过时间的车载侧定位数据,发送给便携终端装置20(参照图\n1的(1))。另一方面,便携终端装置20使用包括携带侧定位坐标及携带侧定位精度的携带侧定位数据、及接收到的车载侧定位数据,根据定位环境来选择用于计算车辆位置的坐标计算方法(参照图1的(2))。然后,在计算出最终的车辆位置的基础上,将计算出的修正完毕坐标发送给车载装置10(参照图1的(3)),在车载装置10中,使用该修正完毕坐标进行包括车辆位置的画面显示(参照图1的(4))。 \n[0049] 这样,在实施例1涉及的定位系统1中,由于根据便携终端装置20在车内存在的经过时间、车辆速度、各GPS功能的定位精度等定位环境,从车载侧定位坐标及携带侧定位坐标来计算出车辆位置,所以,能够提高车辆行驶时的定位精度。而且,可以降低电波因被大厦等反射而产生定位误差的多程(multi pass)问题。 \n[0050] 接着,利用图2对图1所示的车载装置10及便携终端装置20的构成进行说明。图\n2是表示实施例1涉及的车载装置10及便携终端装置20的构成的框图。其中,在图2中仅表示了用于对本实施例1涉及的定位系统1的特征进行说明所必要的构成要素。 [0051] 如图2所示,车载装置10具备:GPS天线11、显示器12、通信部13和控制部14。\n而且,控制部14还具备:GPS接收部14a、车辆信号发送部14b和显示处理部14c。GPS天线\n11是用于接收来自GPS卫星的电波的天线,并将接收到的信号向GPS接收部14a传送。显示器12是触摸屏显示装置等的显示装置,对从显示处理部14c输出的显示数据进行显示。 [0052] 通信部13是与便携终端装置20进行无线通信的处理部。该通信部13例如根据Bluetooth(注册商标)的通信标准,与便携终端装置20之间进 行双向的数据收发。另外,在本实施例1中表示了通过无线通信来进行车载装置10/便携终端装置20之间的通信的情况,但也可以通过有线通信来进行通信。 \n[0053] 控制部14是处理部,其进行以下处理:将包括由车载装置10取得的车载侧定位坐标、车载侧定位精度、车辆速度及便携终端装置20在车内存在的经过时间的车载侧定位数据,经由通信部13发送给便携终端装置20,并且,将从便携终端装置20接收到的修正完毕坐标(车辆位置)显示到显示器12。 \n[0054] GPS接收部14a是进行根据来自GPS天线11的信号,取得车载侧定位坐标及车载侧定位精度等,并将取得的车载侧定位坐标及车载侧定位精度等包含到车载侧定位数据中,向通信部13输出的处理的处理部。另外,在本实施例1中,对使用了DOP值作为车载侧定位精度的情况进行了说明,但也可以取代DOP值而使用捕捉到的GPS卫星的个数。而且,设车载侧定位数据包括定位时间。 \n[0055] 车辆信号发送部14b是进行将未图示的车速传感器等取得的车辆速度、及便携终端装置20在车内存在的经过时间包含到车载侧定位数据中,并经由通信部13向便携终端装置20发送的处理的处理部。这里,作为便携终端装置20在车内存在的经过时间,例如可以使用车载装置10的通信部13与便携终端装置20的通信部23建立了通信之后的经过时间。而且,也可以根据车门的开闭、点火开关操作等检测出乘车者上了车,使用从检测出的乘车时间开始的经过时间。 \n[0056] 显示处理部14c是进行将从便携终端装置20接收到的修正完毕坐标作为车辆位置,将与车辆位置对应的图标和地图信息等合成,并向显示器12显示的处理的处理部。 [0057] 便携终端装置20具备:GPS天线21、通话用天线22、通信部23和控制部24。而且,控制部24还具备:GPS接收部24a、辅助信息接收部24b和计算方法选择部24c。 [0058] GPS天线21是用于接收来自GPS卫星的电波的天线,并将接收到的信号向GPS接收部24a传递。通话用天线22是在电话、数据通信时与基站的通信所使用的天线,将接收到的信号中用于GPS定位的辅助信息向辅 助信息接收部24b传递。 \n[0059] 通信部23是进行与车载装置10的无线通信的处理部,例如根据Bluetooth(注册商标)的通信标准,与车载装置10之间进行双向的数据收发。另外,在本实施例1中,表示了通过无线通信来进行车载装置10/便携终端装置20之间的通信的情况,但也可以通过有线通信来进行通信。 \n[0060] 控制部24是处理部,其进行下述处理:使用包含经由GPS天线21及通话用天线\n22取得的携带侧定位坐标及携带侧定位精度在内的携带侧定位数据、和从车载装置10接收到的车载侧定位数据,根据定位环境计算出携带侧定位坐标及车载侧定位坐标中的某一个,或者使用携带侧定位坐标及车载侧定位坐标双方,计算出车辆位置,并将计算出的车辆位置向车载装置10发送。 \n[0061] GPS接收部24a是进行根据来自GPS天线21的信号而取得携带侧定位坐标及携带侧定位精度等,将包含所取得的携带侧定位坐标及携带侧定位精度等在内的携带侧定位数据,向计算方法选择部24c输出的处理的处理部。另外,在本实施例1中,对使用DOP值作为携带侧定位精度的情况进行了说明,但也可以取代DOP值,而使用捕捉到的GPS卫星的个数。而且,设携带侧定位数据包括定位时间。 \n[0062] 辅助信息接收部24b是进行根据来自通话用天线22的信号来接收辅助GPS用的辅助信息,并将接收到的辅助信息向计算方法选择部24c输出的处理的处理部。这里,作为辅助信息,有可利用的GPS卫星的大致轨道旋转信息、负责当前位置的GPS卫星的详细轨道旋转信息等。 \n[0063] 计算方法选择部24c是将根据来自GPS接收部24a及辅助信息接收部24b的输出而求出的携带侧定位数据、与经由通信部23接收到的车载侧定位数据进行比较,执行与定位环境对应的计算方法的选择处理的处理部。具体而言,该计算方法选择部24c用于选择根据便携终端装置20在车内存在的经过时间、车辆速度、各GPS功能的定位精度,来计算出车辆位置的计算方法。其中,对于计算方法选择部24c的详细的处理步骤,将利用图3~图\n5在后面叙述。而且,该计算方法选择部24c还是进行将利用选择出的计算方法计算出的车辆位置,经由通信部23向车载装置10发送的处理的处理部。 \n[0064] 接着,利用图3,说明计算方法选择部24c进行基于定位精度的选择处理的情况。\n图3是表示基于定位精度的选择处理的处理步骤的流程图。其中,在该图中,表示了车载装置10的通信部13/便携终端装置20的通信部23之间建立了连接之后的处理步骤。 [0065] 如该图所示,当便携终端装置20请求车载侧定位数据时(步骤S101),车载装置\n10将车载侧定位数据向便携终端装置20发送(步骤S102)。接着,便携终端装置20根据车载侧定位数据中包含的车载侧定位精度,判定车载侧是否处于定位状态(步骤S103)。然后,在车载侧处于定位状态的情况下(步骤S103:是),根据携带侧定位数据中包含的携带侧定位精度,判定携带侧是否处于定位状态(步骤S104)。 \n[0066] 然后,在携带侧处于定位状态的情况下(步骤S104:是),将车载侧定位数据中包含的车载侧定位坐标、与携带侧定位数据中包含的携带侧定位坐标的平均,设为算出坐标(步骤S105)。这里,针对步骤S105中的平均处理的多样性(variation)进行说明。 [0067] 该平均处理可以选择单纯平均及加权平均中的任意一个。在选择了单纯平均的情况下,通过将车载侧定位坐标与携带侧定位坐标之和除以2,求出平均。另一方面,在选择了加权平均的情况下,通过使用了各定位精度的加权,求出平均。 \n[0068] 具体而言,在使用DOP值作为各定位精度的情况下,该DOP值取1以上的值,在DOP值为1时精度最佳。因此,当将DOP值减去1之后的值表示为“ΔD”,并且将各定位坐标设为“P”,将车载侧的“ΔD”及“P”设为“ΔDc”及“Pc”、将携带侧的“ΔD”及“P”设为“ΔDp”及“Pp”时,求出的加权平均值可以由公式“加权平均值=Pc×(ΔDp/(ΔDc+ΔDp))+Pp×(ΔDc/(ΔDc+ΔDp))”表示。 \n[0069] 返回到流程图的说明,当在步骤S104中携带侧不是定位状态时(步骤S 104:\n否),将车载侧定位坐标设为算出坐标(步骤S106)。另外,当在步骤S103中车载侧不是定位状态时(步骤S103:否),判定携带侧是否是定位状态(步骤S107),在携带侧是定位状态的情况下(步骤S107:是),将携带侧定位坐标设为算出坐标(步骤S108)。然后,输出在步骤S105、步骤S106及步骤S108中计算出的算出坐标(步骤S109),反复 进行步骤S101以后的处理。 \n[0070] 另外,在不满足步骤S107的判定条件的情况下(步骤S107:否),由于是车载侧及携带侧双方都不处于定位状态的情况,所以不进行步骤S109的处理地反复进行步骤S101以后的处理。 \n[0071] 接着,利用图4,说明计算方法选择部24c进行基于便携终端装置20在车内存在的经过时间及行驶速度的选择处理的情况。图4是表示基于便携终端装置20在车内存在的经过时间及行驶速度的选择处理的处理步骤的流程图。如该图所示,判定是否在乘车后经过了规定时间以上(步骤S201),在经过了规定时间以上的情况下(步骤S201:是),判定行驶速度是否为规定速度以上(步骤S202)。 \n[0072] 然后,在行驶速度为规定速度以上的情况下(步骤S202:是),与携带侧定位坐标相比,优先使用车载侧定位坐标(步骤S203),并反复进行步骤S201以后的处理。另一方面,在不满足步骤S201的判定条件的情况(步骤S201:否)及不满足步骤S202的判定条件的情况下(步骤S202:否),与车载侧定位坐标相比,优先使用携带侧定位坐标(步骤S204),并反复执行步骤S201以后的处理。 \n[0073] 在图4中,表示了没有使用测定精度作为判定基准的情况,但也可以在便携终端装置20在车内存在的经过时间及行驶时间的基础上,使用定位精度作为判定基准。图5是表示基于便携终端装置20在车内存在的经过时间、行驶速度及定位精度的选择处理的处理步骤的流程图。如该图所示,对乘车后是否经过规定时间以上进行判定(步骤S301),在经过了规定时间以上的情况下(步骤S301:是),判定行驶速度是否为规定速度以上(步骤S302)。 \n[0074] 然后,在行驶速度为规定速度以上的情况下(步骤S302:是),与携带侧定位坐标相比,优先使用车载侧定位坐标(步骤S303),反复进行步骤S301以后的处理。另一方面,在不满足步骤S301的判定条件的情况(步骤S301:否)及不满足步骤S302的判定条件的情况下(步骤S302:否),判定携带侧定位精度是否为规定值以上(步骤S304)。 [0075] 然后,在携带侧定位精度为规定值以上的情况下(步骤S304:是),与车载侧定位坐标相比,优先使用携带侧定位坐标(步骤S305),反复执 行步骤S301以后的处理。另一方面,在携带侧定位精度小于规定值的情况下(步骤S304:否),与携带侧定位坐标相比优先使用车载侧定位坐标(步骤S303),反复执行步骤S301之后的处理。 \n[0076] 如上所述,根据本实施例1,由于构成了下述的定位系统,即:车载装置取得包含对定位的坐标进行表示的车载侧定位坐标在内的车载侧定位数据,并将取得的车载侧定位数据向便携终端装置发送,便携终端装置取得包含对定位的坐标进行表示的携带侧定位坐标在内的携带侧定位数据,根据定位环境来选择车载侧定位数据及/或携带侧定位数据,并根据所选择的定位数据计算出所述车辆位置,所以,通过选择与定位环境对应的定位数据,能够使车载用GPS定位功能及携带用GPS定位功能相互补充,提高车辆行驶时的定位精度。 \n[0077] 另外,在上述的实施例1中,表示了在便携终端装置侧进行定位数据的选择及车辆位置的计算的情况,但也可以在车载装置侧进行定位数据的选择及车辆位置的计算。例如,可以构成下述的车载装置:取得包含对定位的坐标进行表示的车载侧定位坐标的车载侧定位数据,由便携终端装置接收包含对定位的坐标进行表示的携带侧定位坐标的携带侧定位数据,根据定位环境选择车载侧定位数据及/或携带侧定位数据,并根据所选择的定位数据计算出车辆位置。 \n[0078] 实施例2 \n[0079] 在本实施例2中,针对在车载装置及便携终端装置中共用卫星信息的情况进行说明。图6是表示实施例2涉及的车载装置10a及便携终端装置20a的构成的框图。其中,在该图中,对与实施例1不同的构成要素重新赋予标记,针对同一构成要素赋予了与实施例1同样的标记(参照图2)。而且,下面针对与实施例1共同的内容省略说明、或归纳成简单的说明。 \n[0080] 车载装置10a还具备存储部15,用于存储卫星信息15a。存储部15是由HDD(Hard Disk Drive)、RAM(Random Access Memory)等存储器件构成的存储部。而卫星信息15a是与GPS卫星的轨道等相关的信息,可以经由GPS天线11及GPS接收部14a获得,也可以经由便携终端装置20a中的GPS天线21或通话用天线22获得。另外,在从便携终端装置20a 取得卫星信息15a的情况下,GPS接收部14a借助通信部13向便携终端装置20a发出请求,便携终端装置20a的GPS接收部24a对该请求作出响应。 \n[0081] 便携终端装置20a还具备存储部25,用于存储卫星信息25a。存储部25是由HDD(Hard Disk Drive)、RAM(Random Access Memory)等存储器件构成的存储部。而卫星信息25a是与GPS卫星的轨道等相关的信息,可以经由GPS天线21及GPS接收部24a获得,也可以经由车载装置10a中的GPS天线11获得。另外,在从车载装置10a取得卫星信息25a的情况下,GPS接收部24a借助通信部23向车载装置10a发出请求,车载装置10a的GPS接收部14a对该请求作出响应。另外,也可以经由通话用天线22及辅助信息接收部24b取得卫星信息25a。 \n[0082] 接着,利用图7,对便携终端装置20a的定位开始处理的处理步骤进行说明。图7是表示便携终端装置20a的定位开始处理的处理步骤的流程图。如该图所示,在接通电源时(步骤S401),判定卫星信息25a是否有效(步骤S402),在卫星信息25a有效的情况下(步骤S402:是),以热启动方式开始定位(步骤S406),然后结束处理。这里,根据取得卫星信息25a之后的经过时间等,来判定卫星信息25a是否有效。另外,热启动是指,使用当前的卫星信息25a直接开始定位。 \n[0083] 另外,在卫星信息25a无效的情况下(步骤S402:否),向车载装置10a请求卫星信息15a(步骤S403),并判定车载侧的卫星信息15a是否有效(步骤S404)。然后,在车载侧的卫星信息15a有效的情况下(步骤S404:是),使用车载侧的卫星信息15a来更新卫星信息25a(步骤S405),并以热启动方式开始定位(步骤S406),然后结束处理。 [0084] 另一方面,在车载侧的卫星信息15a无效的情况下(步骤S404:否),以冷启动方式开始定位(步骤S407),然后结束处理。这里,冷启动是指,等待卫星信息25a被更新为有效的信息,然后开始定位。 \n[0085] 接着,利用图8,对车载装置10a的定位开始处理的处理步骤进行说明。图8是表示车载装置10a的定位开始处理的处理步骤的流程图。如该图所示,在接通电源时(步骤S501),判定卫星信息15a是否有效(步骤S502),在卫星信息15a有效的情况下(步骤S502:是),以热启动方式 开始定位(步骤S506),然后结束处理。这里,根据取得卫星信息\n15a之后的经过时间等,来判定卫星信息15a是否有效。而热启动是指使用当前的卫星信息\n15a直接开始定位。 \n[0086] 另外,在卫星信息15a无效的情况下(步骤S502:否),向便携终端装置20a请求卫星信息25a(步骤S503),并判定携带侧的卫星信息25a是否有效(步骤S504)。然后,在携带侧的卫星信息25a有效的情况下(步骤S504:是),使用携带侧的卫星信息25a来更新卫星信息15a(步骤S505),并以热启动方式开始定位(步骤S506),然后结束处理。 [0087] 另一方面,在携带侧的卫星信息25a无效的情况下(步骤S504:否),以冷启动方式开始定位(步骤S507),然后结束处理。这里,冷启动是指,等待卫星信息15a被更新为有效的信息,然后开始定时。 \n[0088] 这样,根据本实施例2,由于车载装置及便携终端装置共用卫星信息,所以,即使在自身装置中没有有效的卫星信息的情况下,也能够取得有效的卫星信息,因此,可以迅速地开始定位。另外,即使在定为开始后处于暂时无法取得卫星信息的状态的情况下,由于能够取得有效的卫星信息,所以可以继续进行定位。 \n[0089] 实施例3 \n[0090] 在本实施例3中,针对便携终端装置保持后述的系统误差信息的情况进行说明。\n图9是表示实施例3涉及的定位系统的概要的图。如该图所示,实施例3涉及的定位系统\n1a由具备GPS(Global Positioning System)定位功能(以下记作“车载侧GPS功能”)的车载装置100、和具备GPS定位功能(以下记作“携带侧GPS功能”)的便携终端装置200构成。 \n[0091] 这里,相对于车载侧GPS功能具备只使用卫星电波中S/N比高的部分的滤波构成,而携带侧GPS功能具备还使用S/N比低的部分的滤波构成。因此,由于车载侧GPS功能与携带侧GPS功能相比,虽然灵敏度低,但滤波构成简单,所以,能够实现高速的信息处理,且由于可缩短定位周期,所以适用于高速移动时的定位。另一方面,由于携带侧GPS功能与车载侧GPS功能相比,虽然灵敏度高,但滤波构成复杂,所以,定位周期变长,适用于低速移动时的定位。 \n[0092] 另外,由于携带侧GPS功能以在室内中的使用为前提,所以,如上所述其灵敏度高,经由网络从服务器装置接收GPS定位用的辅助信息,与GPS定位中使用的辅助GPS(AGPS)对应,因此,即便是如车内那样的封闭环境,也能够进行高精度的定位。 [0093] 各GPS功能通过从多个GPS卫星接收卫星电波来进行定位处理,此时,可以根据各GPS卫星的位置关系来取得成为GPS定位的精度劣化的指标的数值、即DOP(Dilution Of Precision)值。因此,能够将该DOP值用作定位精度。其中,下面将车载装置100的定位精度记作“车载侧定位精度”,将便携终端装置200的定位精度记作“携带侧定位精度”。而且,将车载装置100计算出的定位坐标记作“车载侧定位坐标”,将便携终端装置200计算出的定位坐标记作“携带侧定位坐标”。 \n[0094] 在实施例3涉及的定位系统1a中,根据各GPS功能的定位精度,由车载侧定位坐标及携带侧定位坐标计算出车辆位置。具体而言,车载装置100将包含车载侧定位坐标及车载侧定位精度的车载侧定位数据向便携终端装置200发送(参照图9的(1))。另一方面,便携终端装置200使用包括携带侧定位坐标及携带侧定位精度的携带侧定位数据、及接收到的车载侧定位数据,来修正双方的定位坐标(参照图9的(2))。然后,在计算出最终的车辆位置的基础上,将计算出的修正完毕坐标发送给车载装置100(参照图9的(3)),在车载装置100中,使用该修正完毕坐标进行包括车辆位置的画面显示(参照图9的(4))。 [0095] 这样,在实施例3涉及的定位系统1a中,由于根据各GPS功能的定位精度,由车载侧定位坐标及携带侧定位坐标计算出车辆位置,所以,能够相互修正车载侧定位坐标及携带侧定位坐标双方中含有的测定误差,从而提高定位精度。而且,可以降低电波因被大厦等反射而产生定位误差的多程(multi pass)问题。 \n[0096] 其中,定位系统1a将各定位坐标的误差与方位、地域对应进行记录,用于车辆位置的修正,对于这一点将在后面叙述。另外,在本实施例3中,对使用与辅助GPS对应的便携终端装置200的情况进行了说明,但也可以使用不与辅助GPS对应的便携终端装置200。 [0097] 接着,利用图10对图9所示的车载装置100及便携终端装置200的 构成进行说明。图10是表示实施例3涉及的车载装置100及便携终端装置200的构成的框图。其中,在图10中仅表示了用于对本实施例3涉及的定位系统1a的特征进行说明所必要的构成要素。 \n[0098] 如图10所示,车载装置100具备:GPS天线110、显示器120、通信部130和控制部\n140。而且,控制部140还具备:GPS接收部140a和显示处理部140b。GPS天线110是用于接收来自GPS卫星的电波的天线,并将接收到的信号向GPS接收部140a传递。显示器120是触摸屏显示装置等显示装置,对从显示处理部140b输出的显示数据进行显示。 [0099] 通信部130是与便携终端装置200进行无线通信的处理部。该通信部130例如根据Bluetooth(注册商标)的通信标准,与便携终端装置200之间进行双向的数据收发。另外,在本实施例3中表示了通过无线通信来进行车载装置100/便携终端装置200之间的通信的情况,但也可以通过有线通信来进行通信。 \n[0100] 控制部140是处理部,其进行以下处理:将包括由车载装置100取得的车载侧定位坐标及车载侧定位精度的车载侧定位数据,经由通信部130发送给便携终端装置200,并且,将从便携终端装置200接收到的修正完毕坐标(车辆位置)显示到显示器120。 [0101] GPS接收部140a是进行根据来自GPS天线110的信号,取得车载侧定位坐标及车载侧定位精度等,并将包含所取得的车载侧定位坐标及车载侧定位精度等的车载侧定位数据,向通信部130输出的处理的处理部。另外,在本实施例3中,对使用DOP值作为车载侧定位精度的情况进行了说明,但也可以取代DOP值而使用捕捉到的GPS卫星的个数。而且,可以设车载侧定位数据包括定位时间。 \n[0102] 显示处理部140b是进行将从便携终端装置200接收到的修正完毕坐标作为车辆位置,将与车辆位置对应的图标和地图信息等合成,并向显示器120显示的处理的处理部。 [0103] 便携终端装置200具备:GPS天线210、通话用天线220、通信部230、控制部240和存储部250。而且,控制部240还具备:GPS接收部240a、辅助信息接收部240b和误差修正部240c。存储部250存储系统误差信息250a以及地图信息250b。 \n[0104] GPS天线210是用于接收来自GPS卫星的电波的天线,并将接收到的信号向GPS接收部240a传递。通话用天线220是在电话、数据通信时与基站的通信所使用的天线,将接收到的信号中用于GPS定位的辅助信息向辅助信息接收部240b传递。 \n[0105] 通信部230是进行与车载装置100的无线通信的处理部,例如根据Bluetooth(注册商标)的通信标准,与车载装置100之间进行双向的数据收发。另外,在本实施例3中,表示了通过无线通信来进行车载装置100/便携终端装置200之间的通信的情况,但也可以通过有线通信来进行通信。 \n[0106] 控制部240是进行使用包含经由GPS天线210及通话用天线220取得的携带侧定位坐标及携带侧定位精度的携带侧定位数据、和从车载装置100接收到的车载侧定位数据,对定位坐标的误差进行修正,并且,将修正完毕坐标向车载装置100发送的处理的处理部。 \n[0107] GPS接收部240a是进行根据来自GPS天线210的信号而取得携带侧定位坐标及携带侧定位精度等,将包含所取得的携带侧定位坐标及携带侧定位精度等的携带侧定位数据,向误差修正部240c输出的处理的处理部。另外,在本实施例3中,对使用DOP值作为携带侧定位精度的情况进行了说明,但也可以取代DOP值,而使用捕捉到的GPS卫星的个数。\n而且,设携带侧定位数据包括定位时间。 \n[0108] 辅助信息接收部240b是进行根据来自通话用天线220的信号来接收辅助GPS用的辅助信息,并将接收到的辅助信息向误差修正部240c输出的处理的处理部。这里,作为辅助信息,有可利用的GPS卫星的大致轨道旋转信息、负责当前位置的GPS卫星的详细轨道旋转信息等。 \n[0109] 误差修正部240c是执行将根据来自GPS接收部240a及辅助信息接收部240b的输出而求出的携带侧定位数据、与经由通信部230接收到的车载侧定位数据进行比较,通过相互地进行误差修正,来修正各定位数据中含有的误差的处理的处理部。而且,该误差修正部240c是处理部,其进行以下处理:通过执行使用了地图信息250b的地图匹配处理,将按每个方位、地域指出具有一定倾向的误差的系统误差蓄积为系统误差信息250a,并使用蓄积的系统误差信息250a对各定位数据进行修正。 \n[0110] 这里,地图匹配处理是指,例如根据地图信息250b中包含的道路的 配置信息,当计算出的当前位置不在道路上时,斟酌行进方向等,来推定行驶中的道路,并将当前位置修正为所推定的道路上的处理。 \n[0111] 而作为每个方位的系统误差,例如有因装置的个体差异引起的误差,对于GPS定位,有时可观察到定位误差在特定的方位上多的趋势。另外,作为每个地域的系统误差,有因为地图信息250b使用的地图所遵照的地球椭圆体、与GPS定位所遵照的地球椭圆体不同而引起的误差。例如,由于日本的地图所遵照的是“TOKYO测地系统”,所以存在越是远离东京的位置,定位误差越大的倾向。 \n[0112] 存储部250是由HDD(Hard Disk Drive)、RAM(Random AccessMemory)等存储器件构成的存储部,用于存储系统误差信息250a及地图信息250b。系统误差信息250a是针对车载侧定位坐标及携带侧定位坐标,蓄积了每个方位或每个地域的系统误差的信息。而且,该系统误差信息250a在误差修正部240c对规定的方位或规定的地域中修正各定位坐标时使用。地图信息250b是道路、建筑物的配置信息,在误差修正部240c进行地图匹配处理时使用。 \n[0113] 接着,利用图11,对实施例3涉及的定位系统1a所执行的处理步骤的概要进行说明。图11是表示实施例3涉及的定位系统所进行的处理步骤的概要的流程图。其中,在该图中,表示了车载装置100的通信部130/便携终端装置200的通信部230之间确立了连接之后的处理步骤。 \n[0114] 如该图所示,在便携终端装置200请求车载侧定位数据时(步骤S601),车载装置\n100将车载侧定位数据向便携终端装置200发送(步骤S602)。接着,便携终端装置200根据车载侧定位数据中包含的车载侧定位精度,判定车载侧是否是定位状态(步骤S603)。然后,在车载侧是定位状态的情况下(步骤S603:是),根据携带侧定位数据中包含的携带侧定位精度,判定携带侧是否是定位状态(步骤S604)。 \n[0115] 然后,在携带侧是定位状态的情况下(步骤S604:是),计算出车载侧定位数据中包含的车载侧定位坐标、与携带侧定位数据中包含的携带侧定位坐标的平均(步骤S605)。\n这里,针对步骤S605中的平均处理的多样性(variation)进行说明。 \n[0116] 该平均处理可以选择单纯平均及加权平均中的任意一个。在选择了单 纯平均的情况下,通过将车载侧定位坐标与携带侧定位坐标之和除以2,求出平均。另一方面,在选择了加权平均的情况下,通过使用了各定位精度的加权,求出平均。 \n[0117] 具体而言,在使用DOP值作为各定位精度的情况下,该DOP值取1以上的值,在DOP值为1时精度最佳。因此,当将DOP值减去1之后的值表示为“ΔD”,并且将各定位坐标设为“P”,将车载侧的“ΔD”及“P”设为“ΔDc”及“Pc”、将携带侧的“ΔD”及“P”设为“ΔDp”及“Pp”时,求出的加权平均值可以由公式“加权平均值=Pc×(ΔDp/(ΔDc+ΔDp))+Pp×(ΔDc/(ΔDc+ΔDp))”表示。 \n[0118] 返回到流程图的说明,当在步骤S604中携带侧不是定位状态时(步骤S604:否),将车载侧定位坐标设为算出坐标(步骤S606)。另外,当在步骤S603中车载侧不是定位状态时(步骤S603:否),判定携带侧是否是定位状态(步骤S607),在携带侧是定位状态的情况下(步骤S607:是),将携带侧定位坐标设为算出坐标(步骤S608)。然后,输出在步骤S605、步骤S606及步骤S608中计算出的算出坐标(步骤S609),反复进行步骤S601以后的处理。 \n[0119] 另外,在不满足步骤S607的判定条件的情况下(步骤S607:否),由于是车载侧及携带侧双方都不处于定位状态的情况,所以不进行步骤S609的处理地反复进行步骤S601以后的处理。 \n[0120] 接着,利用图12及图13,对便携终端装置200的误差修正部240c蓄积系统误差信息250a的处理步骤进行说明。图12是表示与方位相关的系统误差信息250a的蓄积处理步骤的流程图,图13是表示与地域(area)相关的系统误差信息250a的蓄积处理步骤的流程图。其中,在图12及图13中,表示了将在图11的步骤S609中输出的算出坐标作为输入数据,蓄积系统误差的步骤。 \n[0121] 首先,针对与方位相关的系统误差信息的蓄积处理步骤进行说明。如图12所示,在被输入算出坐标时(步骤S701),通过使用了地图信息250b的地图匹配,推定真的移动方位(步骤S702)。然后,计算出根据车辆侧定位坐标及携带侧定位坐标求出的方位、与真的移动方位的差量(步骤S703),并与方位建立对应关系地追加到系统误差信息250a中(步骤 S704)。并且,在针对与真的移动方位的差量,进行了基于各定位精度的加权处理的基础上(步骤S705),与方位建立对应关系地追加到系统误差信息250a中(步骤S706),然后结束处理。 \n[0122] 接着,对于地域(area)相关的系统误差信息的蓄积处理步骤进行说明。如图13所示,在被输入算出坐标时(步骤S801),通过使用了地图信息250b的地图匹配,推定真的坐标(步骤S802)。然后,计算出车辆侧定位坐标及携带侧定位坐标、与真的坐标位的差量(步骤S803),并与区域建立对应关系地追加到系统误差信息250a中(步骤S804)。并且,在针对与真的坐标的差量,进行了基于各定位精度的加权处理的基础上(步骤S805),与区域建立对应关系地追加到系统误差信息250a中(步骤S806),然后结束处理。 [0123] 接着,利用图14,对便携终端装置200的误差修正部240c利用系统误差信息250a的步骤进行说明。图14是表示系统误差信息250a的利用处理步骤的流程图。其中,由于车载装置100进行的处理与图11相同,所以在该图中,仅表示了便携终端装置200进行的处理步骤。 \n[0124] 如该图所示,当便携终端装置200请求车载侧定位数据(步骤S901)、并从车载装置100接收到车载侧定位数据时,根据车载侧定位数据中包含的车载侧定位精度来判定车载侧是否是定位状态(步骤S902)。然后,在车载侧是定位状态的情况下(步骤S902:是),根据携带侧定位数据中包含的携带侧定位精度,判定携带侧是否是定位状态(步骤S903)。\n其中,步骤S902及步骤S903中的是否是定位状态的判定处理与图11的情况同地,分别根据车载侧定位精度及携带侧定位精度进行。 \n[0125] 然后,在携带侧是定位状态的情况下(步骤S903:是),将车载侧定位数据中包含的车载侧定位坐标、与携带侧定位数据中包含的携带侧定位坐标的平均设为算出坐标(步骤S904)。这里,针对步骤S904中的平均处理,可以与图11同样,选择单纯平均及加权平均中的任意一个。 \n[0126] 然后,当在步骤S903中携带侧不是定位状态时(步骤S903:否),将车载侧定位坐标设为算出坐标(步骤S905)。另外,当在步骤S902中车载侧不是定位状态时(步骤S902:否),判定携带侧是否是定位状态(步骤S906),在携带侧是定位状态的情况下(步骤S906:是),将携带侧 定位坐标设为算出坐标(步骤S907)。然后,针对在步骤S904、步骤S905及步骤S907中计算出的算出坐标,进行基于系统误差信息250a的修正的基础上(步骤S908),将修正后的算出坐标输出(步骤S909),反复执行步骤S901以后的处理。 [0127] 另外,由于不满足步骤S906的判定条件的情况下(步骤S906:否),是车载侧及携带侧双方都不是定位状态的情况,所以,不进行步骤S909的处理地反复执行步骤S901以后的处理。 \n[0128] 如上所述,根据本实施例3,由于车载装置取得对定位的坐标进行表示的车载侧定位坐标、及对与定位相关的精度进行表示的车载侧定位精度,并将所取得的车载侧定位坐标及车载侧定位精度向便携终端装置发送,便携终端装置取得对定位的坐标进行表示的携带侧定位坐标、及对与定位相关的精度进行表示的携带侧定位精度,并根据车载侧定位精度及携带侧定位精度,从车载侧定位坐标及携带侧定位坐标计算出车辆位置,所以,通过对应于定位精度的高低,由车载侧定位坐标及携带侧定位坐标计算出车辆位置,可以使车载用GPS定位功能及携带用GPS定位功能相互补充,提高车辆行驶时的定位精度。 [0129] 而且,由于蓄积与方位或地域(area)相关的系统误差信息,并使用蓄积的系统误差信息修正各定位坐标,所以,对于规定的方位、规定的地域,可有效地修正具有一定倾向的误差。另外,在本实施例1中,在便携终端装置侧进行了误差修正处理,但也可以按照由便携终端装置向车载装置发送携带侧定位数据,在车载装置侧进行误差修正处理的方式,构成定位系统。 \n[0130] 上述的实施例3对便携终端装置保持系统误差信息的情况进行了说明,但还可以使车载装置也保持系统误差信息。鉴于此,在以下所示的实施例4中,针对使车载装置也保持系统误差信息的情况进行说明。 \n[0131] 实施例4 \n[0132] 图15是表示实施例4涉及的车载装置100a及便携终端装置200a的构成的框图。\n其中,实施例4涉及的便携终端装置200a是误差修正部240c所进行的处理与实施例3稍微不同的终端装置,由于基本的动作相同,所 以赋予了与实施例3相同的符号。而且,对于车载装置100a而言,针对与实施例3涉及的车载装置100不同的构成要素重新赋予标记,对同一构成要素赋予和实施例3相同的符号。并且,下面对与实施例3共同的说明,进行了省略或归纳成简单的说明。 \n[0133] 车载装置100a还具备存储部150,用于存储系统误差信息150a。存储部150是由HDD(Hard Disk Drive)、RAM(Random Access Memory)等存储器件构成的存储部。而系统误差信息150a是蓄积了与车载侧定位坐标相关的系统误差的信息,由便携终端装置200a的误差修正部240c提供。另一方面,便携终端装置200a中的系统误差信息250a与实施例3相同,是蓄积了与车载侧定位坐标及携带侧定位坐标相关的系统误差的信息。 [0134] 而且,设置于控制部140的误差修正部140c根据系统误差信息150a,对从GPS接收部140a接收到的车载侧定位坐标进行修正,并且将修正后的车载侧定位坐标与车载侧定位精度一同经由通信部130向便携终端装置200a发送。这样,通过使车载装置100a侧保持系统误差信息150a,车载装置100a能够将修正了系统误差之后的车载侧定位坐标提供给便携终端装置200a。 \n[0135] 另外,在本实施例4中,便携终端装置200a中的系统误差信息250a与实施例3同样,被设定为蓄积了与车载侧定位坐标及携带侧定位坐标相关的系统误差的信息,但也可以作为仅蓄积了与携带侧定位坐标相关的系统误差的信息。由此,由于与车载装置100a相关的系统误差能够在车载装置100a侧管理,与便携终端装置200a相关的系统误差能够在便携终端装置200a侧管理,所以,还能够容易地应对车载装置100a与便携终端装置200a的组合的变更。 \n[0136] 接着,使用图16,对本实施例4涉及的定位系统所进行的处理步骤的概要进行说明。图16是表示实施例4涉及的定位系统所进行的处理步骤的概要的流程图。 [0137] 如该图所示,在便携终端装置200a请求车载侧定位数据时(步骤S1001),车载装置100a将车载侧定位数据向便携终端装置200a发送(步骤S1002)。接着,便携终端装置\n200a根据携带侧定位数据中包含的携带 侧定位精度,判定携带侧是否处于定位状态(步骤S1003)。 \n[0138] 然后,在携带侧是定位状态的情况下(步骤S1003:是),将车载侧定位数据中包含的车载侧定位坐标、与携带侧定位数据中包含的携带侧定位坐标的平均设为算出坐标(步骤S1004)。这里,对于步骤S1004中的平均处理,可以与图11同样地选择单纯平均及加权平均的任意一个。 \n[0139] 另一方面,当在步骤S1003中携带侧不是定位状态的情况下(步骤S1003:否),将车载侧定位坐标设为算出坐标(步骤S1005)。然后,将算出坐标向地图匹配处理输出(步骤S1006),通过地图匹配来推定真的坐标(步骤S1007)。接着,针对两个定位坐标计算出与真的坐标的差量(步骤S1008),并将其向系统误差信息250a蓄积。然后,将车载侧定位坐标与真的坐标的差量向车载装置100a发送(步骤S1009),反复进行步骤S1001以后的处理。 \n[0140] 另外,接收到车载侧定位坐标与真的坐标的差量的车载装置100a,进行将该误差信息向系统误差信息150a蓄积的处理(步骤S1010),根据系统误差信息150a修正车载侧定位数据(步骤S1011),反复进行步骤S1002以后的处理。 \n[0141] 这样,根据本实施例4,通过使车载装置侧也保持系统误差信息,车载装置能够将修正了系统误差后的车载侧定位坐标提供给便携终端装置。 \n[0142] 工业上的可利用性 \n[0143] 综上所述,本发明涉及的定位系统及车载装置在定位精度的提高上是有用的,尤其适用于想要提高车辆行驶时的定位精度的情况。
法律信息
- 2013-10-09
- 2010-12-29
实质审查的生效
IPC(主分类): G01C 21/26
专利申请号: 200880115870.6
申请日: 2008.11.13
- 2010-10-06
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有引用任何外部专利数据! |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |