著录项信息
专利名称 | 一种用于室内飞艇的自动驾驶仪 |
申请号 | CN201110163042.3 | 申请日期 | 2011-06-17 |
法律状态 | 权利终止 | 申报国家 | 中国 |
公开/公告日 | 2012-01-25 | 公开/公告号 | CN102331783A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G05D1/08 | IPC分类号 | G;0;5;D;1;/;0;8查看分类表>
|
申请人 | 沈阳航空航天大学 | 申请人地址 | 辽宁省沈阳市沈北新区道义南大街37号
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 沈阳航空航天大学 | 当前权利人 | 沈阳航空航天大学 |
发明人 | 李一波;吴星刚;张森悦;胡为;李化鹏 |
代理机构 | 沈阳维特专利商标事务所(普通合伙) | 代理人 | 孙丽珠 |
摘要
一种用于室内飞艇的自动驾驶仪,是为解决室内外通用驾驶仪存在的对室内飞行的飞行器控制不灵活、经常出现偏离航线而发生频繁撞击、刮蹭墙体、展品,场内人员等现象,增加了安全隐患和操作者的工作强度等技术问题而设计的。该驾驶仪由地面站模块、手动遥控模块、艇载模块、飞艇定位等模块组成。通过采用UWB超宽带技术和超声波传感器相结合的方式,实现室内飞艇的自动驾驶。室内飞艇自动驾驶仪能够设定任务航迹及飞行控制参数,可按照预定航迹完成自主飞行,具有自动避障功能,同时兼容手动遥控操作。实现了飞艇在狭小区域的灵活性及在开阔区域的平稳性;采用航线偏航角纠正的方式减小或消除了室内气流扰动对飞艇飞行的影响;通过无切换控制实现了室内飞艇驾驶仪控制器的稳定性和手动遥控干预的快速性。
1.一种用于室内飞艇的自动驾驶仪,该驾驶仪由地面站模块、手动遥控模块、艇载模块及飞艇定位模块组成;其特征在于:采用多个单独回路对飞艇各个螺旋桨风扇进行控制及将飞艇飞行方向控制器设有不对称调节区,根据飞艇航线两侧的自由活动空间大小,将飞行方向控制器的正反转输出比例进行不对称的设定,使得飞艇在空间狭小区域内的自动调节趋向于快速回归航线,通过航线偏航角纠正的方式减小扰动对飞艇飞行的影响;通过采用UWB超宽带技术和超声波传感器相结合的方式,由地面站模块接收来自飞艇定位模块、手动遥控模块及艇载模块的飞艇状态信息,即由商务级台式计算机通过串口485与数传电台相连,通过交换机与UWB服务器相连,来获取飞艇定位信息,以此进行导航制导姿态计算,形成制导指令,再将制导指令通过无线数据传输发回到艇载模块,即通过设定任务航迹及飞行控制参数,同时兼容手动遥控操作,使飞艇避免脱离预定航迹;实现自动避障;并实时监控、反馈和显示飞艇的飞行状态,使飞艇航线得到不断的修正。
2.根据权利要求1所述的用于室内飞艇的自动驾驶仪,其特征在于:所述艇载模块,由飞控、导航、通信、自主避障、电池供电和电池电量监控及自动报警子模块组成;以STC12C5A60S2单片机为核心与外围的电子数字罗盘、无线通讯模块、舵机或带电子调速器的电机、超声波测距模块形成链路;通过其中的无线通讯模块与地面站模块和手动遥控模块进行无线通信,根据制定的通信协议解析接收指令并生成PWM信号来控制飞艇油门、方向和升降螺旋桨所对应的电机或舵机;与电子数字罗盘和超声波传感器进行通信,获取飞艇姿态及附近障碍物的相关信息,并发回给地面站模块。
3.根据权利要求1所述的用于室内飞艇的自动驾驶仪,其特征在于:所述航线偏航角的容许偏差为-20度~+20度。
4.根据权利要求1所述的用于室内飞艇的自动驾驶仪,其特征在于:所述飞艇定位模块采用UWB室内定位传感器进行飞艇定位,它包含一个天线阵列以及UWB信号接收器;通过检测装载在飞艇上的定位标签发出的UWB信号,来计算该标签的实际空间位置,并传送给地面站模块。
5.根据权利要求1所述的用于室内飞艇的自动驾驶仪,其特征在于:所述手动遥控模块是由便携式遥控器与无线通信模块组成,便携式遥控器与地面站模块之间通过协议约定,进行控制指令的传递和交换;通过手动遥控模块直接操控飞艇按制导指令自由飞行,无需预先设定飞行轨迹和飞行动作。
6.根据权利要求1所述的用于室内飞艇的自动驾驶仪,其特征在于:所述设定不对称调节区的计算,按如下公式进行,
其中:
Out:飞艇飞行方向控制器输出值,输出范围为[-1500,+1500];
OutL:飞艇飞行方向控制器向左转输出值;
OutR:飞艇飞行方向控制器向右转输出值;
D:飞艇艇身长度
DL:飞艇艇身两侧的超声波传感器感知左侧最近障碍物的距离
DR:飞艇艇身两侧的超声波传感器感知右侧最近障碍物的距离。
7.根据权利要求1所述的用于室内飞艇的自动驾驶仪,其特征在于:所述兼容手动遥控操作,指采用遥控干预自动控制的方式,无需进行手/自动切换操作。
8.根据权利要求7所述的用于室内飞艇的自动驾驶仪,其特征在于:所述遥控干预自动控制的方式指,当进行手动遥控时,实际控制输出值按如下方法计算,当0≥OutM≥OutA时,Out=OutA;当0≥OutA≥OutM时,Out=OutM;当OutA≥0≥OutM或OutM≥0≥OutA时,Out=OutA+λ·OutM;当OutA≥OutM≥0时,Out=OutA;当OutM≥OutA≥0时,Out=OutM,式中的OutA为自动控制器输出值,OutM为手动遥控输出值,λ为手动控制输出的校正系数,λ的取值范围为[0,1]。
一种用于室内飞艇的自动驾驶仪\n技术领域:\n[0001] 本发明涉及一种驾驶仪,尤其涉及一种用于室内飞艇的自动驾驶仪。适用于飞艇等悬浮式航空器的自动驾驶,属于自动控制领域。\n背景技术:\n[0002] 室内飞艇作为一种被广泛使用的悬浮式航空器,具有在空中悬浮的能力,而且操作驾驶简单方便,它能够在低空低速飞行,安全性能比较好,对起落的场地要求不高,运营成本也比较低,且易于维护保养。室内飞艇的优势在于其商业价值,它可以提供良好的周边视界,可以进行广告展示、航拍、电视转播和安全监控等活动。现在很多的大型科学技术馆和展览馆都会采用多样的形势进行展出和表演,室内飞艇作为室内小型机动性飞行器可以填补大型室内上空的空间,对于一些大型展览馆和博览会也是一种极好的宣传和表演手段。\n[0003] 由于室内噪声控制等目的的需要,室内飞艇所装配的动力电机功率及转速均较小,导致室内飞艇的灵活性大打折扣,飞艇转弯速度缓慢,经常偏离航线,并且偏离航线之后需要很长时间才能返回既定航线。\n[0004] 室内飞艇相对于所在空间的体积庞大,加之室内空间存在大量设备、展品等障碍物,导致飞艇飞行空间狭小,增加了飞行控制的难度。而目前的飞艇控制设备均是室内室外通用的,没有考虑室内飞艇的这些特殊情况,导致室内飞艇的自动驾驶效果非常差,频繁的撞击、刮蹭墙体、展品甚至场内人员,不得不采用手动进行控制。\n[0005] 由于室内飞艇所飞行的空间内不可避免的存在演员、运动员、游客、观众及大量工作人员等绝对不能触碰的不可预见的流动障碍,对室内飞艇自动驾驶仪的安全性要求大大增加,同时需要频繁的切换到手动模式以临时改变航向,避开障碍。而目前的飞艇控制器在手动控制器与自动控制器之间没有相互配合,均采用控制器切换的方式选择采用手动还是自动模式,要么手动,要么自动。有所改进也只是通过切换方式上的改变,减小切换时的控制器扰动。这在一定程度上使得工作人员不能及时干预飞艇的飞行状态,只能提前切换到手动模式以避免失误。这大大增加了系统的安全隐患以及操作人员的工作强度。\n发明内容:\n[0006] 本发明为了解决目前的室内外通用驾驶仪存在的对室内飞行的飞艇等飞行器控制不灵活、经常出现偏离航线而发生频繁撞击、刮蹭墙体、展品,甚至场内人员等现象,以及增加了系统的安全隐患和操作人员的工作强度等技术问题,提供了一种能够设定任务航迹及飞行控制参数,可按照预定航迹完成自主飞行,具有自动避障功能,同时兼容手动遥控操作的用于室内飞艇的自动驾驶仪。该驾驶仪由地面站模块、手动遥控模块、艇载模块及飞艇定位模块组成;采用多个单独回路对飞艇各个螺旋桨风扇进行控制及将飞艇飞行方向控制器设有不对称调节区,根据飞艇航线两侧的自由活动空间大小,将飞行方向控制器的正反转输出比例进行不对称的设定,使得飞艇在空间狭小区域内的自动调节趋向于快速回归航线,通过航线偏航角纠正的方式减小扰动对飞艇飞行的影响;通过采用UWB超宽带技术和超声波传感器相结合的方式,由地面站模块接收来自飞艇定位模块、手动遥控模块及艇载模块的飞艇状态信息,即由商务级台式计算机通过串口485与数传电台相连,通过交换机与UWB服务器相连,来获取飞艇定位信息,以此进行导航制导姿态计算,形成制导指令,再将制导指令通过无线数据传输发回到艇载模块,即通过设定任务航迹及飞行控制参数,同时兼容手动遥控操作,使飞艇避免脱离预定航迹;实现自动避障;并实时监控、反馈和显示飞艇的飞行状态,使飞艇航线得到不断的修正。\n[0007] 本发明与现有技术相比,具有如下优点:\n[0008] 1.通过对飞艇飞行方向控制器设置不对称调节区,实现了既保证了狭小区域的灵活性,又提高了飞艇在开阔区域的平稳性。\n[0009] 2.采用航线偏航角纠正的方式减小或消除了室内气流扰动对飞艇飞行的影响。\n[0010] 3.通过实时无切换手自动控制器实现了室内飞艇驾驶仪控制器的稳定性和手动遥控干预的快速性。\n附图说明\n[0011] 图1是本发明的结构示意图;\n[0012] 图2是本发明的实现方式示意图;\n[0013] 图3是本发明中地面站模块结构示意图;\n[0014] 图4是本发明中艇载模块工作原理图;\n[0015] 图5是本发明实施状态的物理构成图;\n[0016] 图6是本发明航线偏航角抗扰动计算方法示意图。\n具体实施方式\n[0017] 下面参考附图,对本发明做进一步描述。\n[0018] 参看图1-6,一种用于室内飞艇的自动驾驶仪,该驾驶仪由地面站模块、手动遥控模块、艇载模块及飞艇定位模块组成;采用多个单独回路对飞艇各个螺旋桨风扇进行控制及将飞艇飞行方向控制器设有不对称调节区,根据飞艇航线两侧的自由活动空间大小,将飞行方向控制器的正反转输出比例进行不对称的设定,使得飞艇在空间狭小区域内的自动调节趋向于快速回归航线,通过航线偏航角纠正的方式减小扰动对飞艇飞行的影响;通过采用UWB超宽带技术和超声波传感器相结合的方式,由地面站模块接收来自飞艇定位模块、手动遥控模块及艇载模块的飞艇状态信息,即由商务级台式计算机通过串口485与数传电台相连,通过交换机与UWB服务器相连,来获取飞艇定位信息,以此进行导航制导姿态计算,形成制导指令,再将制导指令通过无线数据传输发回到艇载模块,即通过设定任务航迹及飞行控制参数,同时兼容手动遥控操作,使飞艇避免脱离预定航迹;实现自动避障;并实时监控、反馈和显示飞艇的飞行状态,使飞艇航线得到不断的修正。\n[0019] 其中:\n[0020] 所述艇载模块,由飞控、导航、通信、自主避障、电池供电和电池电量监控及自动报警子模块组成;以STC12C5A60S2单片机为核心与外围的电子数字罗盘、无线通讯模块、舵机或带电子调速器的电机、超声波测距模块形成链路;通过其中的无线通讯模块与地面站模块和手动遥控模块进行无线通信,根据制定的通信协议解析接收指令并生成PWM信号来控制飞艇油门、方向和升降螺旋桨所对应的电机或舵机;与电子数字罗盘和超声波传感器进行通信,获取飞艇姿态及附近障碍物的相关信息,并发回给地面站模块。\n[0021] 所述航线偏航角的容许偏差为-20度~+20度。\n[0022] 所述飞艇定位模块采用UWB室内定位传感器进行飞艇定位,它包含一个天线阵列以及UWB信号接收器;通过检测装载在飞艇上的定位标签发出的UWB信号,来计算该标签的实际空间位置,并传送给地面站模块。\n[0023] 所述手动遥控模块是由便携式遥控器与无线通信模块组成,便携式遥控器与地面站模块之间通过协议约定,进行控制指令的传递和交换;通过手动遥控模块直接操控飞艇按制导指令自由飞行,无需预先设定飞行轨迹和飞行动作。\n[0024] 所述兼容手动遥控操作功能,指采用遥控干预自动控制的方式,无需进行手/自动切换操作。\n[0025] 为了使室内飞艇实现自主飞行功能,按如下几点设计了自动驾驶仪。\n[0026] 1.飞艇飞行方向控制器设置不对称调节区,根据飞艇航线左、右(内、外)的自由活动空间大小(即距离最近障碍物的远近),将控制器的正反转输出比例进行不对称的设定,使得飞艇在空间狭小区域内的自动调节趋向于快速回归航线,而在空间广阔区域的自动调节趋向于飞艇艇身平稳。\n[0027] 假设飞艇方向控制器输出值Out定义如下,输出范围为[-1500,+1500],负值为控制方向螺旋桨驱动电机反转,飞艇向左转;正值为控制方向螺旋桨驱动电机正转,飞艇向右转;0为不转。自动驾驶仪通过安装在飞艇艇身两侧的超声波传感器感知两侧最近障碍物的距离,左侧距离定义为DL,右侧距离定义为DR。按照飞艇长D来进行计算,如果DL、DR均大于D,则不对控制器输出进行限制;DL<D或者DR<D时,控制器的输出按下式计算:\n[0028] \n[0029] \n[0030] 2.飞艇处于室内飞行航线的不同位置,必然会受到不同方向、不同大小的气流扰动,例如大门、窗户甚至空调出风口等处的气流。本自动驾驶仪在充分考虑这些扰动的特点之后,采用航线偏航角纠正的方式减小这类扰动对飞艇飞行的影响,具体方法如下。\n[0031] 由于室内飞艇的航线都是封闭的曲线,通过对飞艇在不同时间飞过航线的同一段落时的偏航数据进行统计。当发现飞艇总是向同一个方向偏离趋于固定的距离时,根据偏离航线的距离推导出需要对飞艇方向控制器输出进行校正的参数。如图6所示,假设飞艇飞过某一段航线a-b时,航线偏航角度为α总是偏向航线左侧,偏离角度为β,通过对目标航线进行校正,使得飞艇的目标偏航角度更改为α-β,这样就使得飞艇能够按照既定的航线飞过a-b段,而不受扰动的影响。\n[0032] 3.飞艇自动驾驶仪的自动控制器与手动遥控模块之间不采用手动/自动控制切换的方式,通过实时无切换手动/自动控制器保证飞艇驾驶仪控制器的稳定性和手动遥控干预的快速性。假设自动控制器输出值为OutA,手动遥控输出值为OutM,则实际控制输出值按下式计算:\n[0033] 当0≥OutM≥OutA时,Out=OutA\n[0034] 当0≥OutA≥OutM时,Out=OutM\n[0035] 当OutA≥0≥OutM或OutM≥0≥OutA时,Out=OutA+λ·OutM\n[0036] 当OutA≥OutM≥0时,Out=OutA\n[0037] 当OutM≥OutA≥0时,Out=OutM\n[0038] 式中的λ为手动控制输出的校正系数,取值范围为[0,1]。\n[0039] 实施例\n[0040] 下面是飞艇自动驾驶仪的应用实例。\n[0041] 参看图5,用于室内飞艇的自动驾驶仪的应用环境,包括地面站控制室和飞艇飞行大厅(飞行场地)两大部分。在地面站控制室内设有飞艇地面站控制计算机(地面站模块)以及UWB室内定位服务器(飞艇定位模块);所述飞艇地面站控制计算机,经485总线、太网交换机分别与飞艇飞行大厅内的数传电台、UWB传感器有线连接;所述UWB室内定位服务器经以太网交换机与飞艇飞行大厅内的UWB传感器形成有线链路;所述数传电台、UWB传感器及便携式遥控器、操控手柄(手动遥控模块)与飞艇飞行大厅内飞艇(艇载模块)上的定位标签和电子设备形成无线链路。是飞艇的地面指挥控制中心及操纵者与飞艇状态的交互中心。负责地面指令的发送、飞艇状态信息的接收、飞艇的导航制导姿态计算以及飞艇飞行状态的实时监控和显示。\n[0042] 参看图3,地面站显示操作单元是一个机动灵活、数据处理能力强、存储量大、环境适应能力强、用户交互界面友好、显示直观的综合系统。主要功能:①对飞行数据、系统状态数据进行处理,结合航线信息及飞行模式进行自主飞行控制。②在界面内显示飞艇的飞行姿态、航迹、位置信息以及仪表指示。③为管理者提供方便的飞控参数调整、航线设置窗口。\n④为控制者提供良好的人机交互界面,便于操控者在超视距的环境下完成遥控遥测等导航任务。⑤在界面内设置了闪灯和语音报警,当飞艇系统出现异常时,在界面内进行报警。\n[0043] 本发明的室内飞艇自动驾驶仪具有遥控飞行和自主飞行两种飞行控制方式。遥控飞行方式分为飞艇地面工作间操控手柄遥控方式和大厅便携式数字遥控器遥控飞行方式。\n前者便于工作人员在飞艇地面工作间通过观察飞艇监视器进行飞艇的控制。后者便于工作人员在大厅内通过目视对飞艇进行控制。便携式数字遥控器与飞艇地面站控制计算机之间通过协议约定,进行控制权的交换。并且便携式数字遥控器的优先级高于飞艇地面站控制计算机。\n[0044] 在遥控展示方式下,工作人员直接用操控手柄或便携式数字遥控器操控飞艇自由飞行,飞艇将根据手柄的加、减速、爬升、下降、转弯等命令飞行。便携式数字遥控方式是由便携式遥控器与无线通信模块组成,便携式遥控器与飞艇地面站控制计算机之间通过协议约定,进行控制权的交换。在此方式下,无需预先设定飞行轨迹和飞行动作。\n[0045] 在自主飞行模式下,飞艇升空后,工作人员需要预先设置飞行轨迹模式、进行飞行轨迹和飞行动作设计,而后飞艇将不再需要人为干预就能按照预设飞行轨迹自主飞行。\n[0046] 数传电台负责飞艇与飞艇控制计算机的无线通信。数传电台固定放置在飞艇地面工作间外合适位置处,并且与飞艇间保持无障碍物遮挡。\n[0047] 参看图4,艇载控制模块的主要是由地面站设计控制算法,由机载模块完成运动控制。机载模块需要具有以下功能:通过无线通信模块与上位机和遥控器进行通信,根据制定的通信协议解析接收的指令,做相应的操作;为确保数据通信的正确性,将接收数据进行循环冗余校验,数据错误则放弃,正确则进行处理并生成PWM信号来控制飞艇油门、方向和升降所对应的电机或舵机;与数字罗盘进行通信,获取飞艇姿态信息发给上位机;与超声\n2\n测距模块连接,利用IC总线获取飞艇与前方障碍物距离,当距离小于设定报警距离时启动APR6008报警模块;根据上位机指令点亮彩灯。STC12C5A60S2上位机根据规划的航迹和飞艇返回的姿态信息,分析改变控制数据发给下位机,以实现实时控制飞艇按规划航迹飞行。\n[0048] 艇载模块包括以下子模块:艇载计算机控制模块、磁航向传感器导航模块(电子数字罗盘)、通信模块(数传模块)、自动避障模块、电池电量监控模块、艇囊气压监控模块、自动报警模块。\n[0049] ①艇载计算机控制模块以飞艇的目标状态作为输入,通过通信模块接收地面控制站和遥控器的控制指令,并在艇载控制计算机内进行命令解析,产生相应的PWM信号驱动各个执行机构(尾舵电机,推进系统电机,推进系统转动涵道舵机)使飞艇由当前状态尽快向目标状态改变,最终达到目标状态。\n[0050] 考虑到室内飞艇载重小的特点,在艇载设备的选择上,不但要求功能性和通用性过关,而且艇载设备的自身重量也不能过大,为此我们选择了重量轻、功能强大的STC12C5A60S2贴片单片机作为艇载控制计算机。它是一款单时钟周期(1T)的新一代8051单片机,具有高速、低功耗、超强抗干扰能力,指令代码与传统的8051单片机完全兼容,但速度比8051快8-12倍,内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换,针对电机控制等优点。\n[0051] 艇载计算机通过TTL接口与数字罗盘、数传通信模块、艇载语音模块、电池电量监\n2\n控模块、艇囊气压监控模块、任务执行机构实现硬件连接;通过IC接口与超声波测距模块实现硬件连接。\n[0052] ②通信模块即数传电台,是整个无人室内飞艇自动驾驶仪系统的纽带,在整个室内无人飞艇自动驾驶仪系统正常运行时,负责实时传输上行数据和下行数据,以确保飞艇系统正常运作。\n[0053] ③磁航向传感器导航模块和自动避障模块,是无人室内飞艇自动驾驶仪系统自主飞行模式的“眼睛”。磁航向传感器导航模块采用Honeywell公司的HMR3300数字罗盘,它为系统提供准确的姿态角度信息(偏航角、俯仰角、滚转角);自动避障模块采用SRF02超声波传感器,并且安装在飞艇的头部,以确保其具有最大的视角,当飞艇前面6米以内出现障碍物时,飞艇控制计算机会通过数传模块将距离障碍物的距离信息传送给地面站控制系统,地面站控制系统综合当前的空间位置信息、姿态角度信息以及距障碍物的距离信息进行导航制导,以此来实现飞艇的自主飞行和自动避障。\n[0054] ④电池电量监控模块,是通过艇载控制计算机的A/D转换功能端口实现的,通过该端口实时采集当前电池的电量,并且定时每分钟向地面控制站发送一次电池电量值。当电池电量值低于使用电池的最低工作电压值时,地面站将在显示界面给出报警提示。\n[0055] ⑤艇囊气压监控模块采用的是Motorola公司的气压传感器,工作过程与电池电量监控模块相似,就不再赘述。\n[0056] ⑥自动报警模块采用APR6008语音芯片驱动扬声器。当飞艇处于起飞和着陆模式时,自动报警模块将发出语音报警,以提醒现场的工作人员做好相关准备;当飞艇出现系统故障时,语音模块将发出另外的警示提示音。\n[0057] 飞艇定位模块选用Series 7000系列UWB室内定位传感器进行飞艇定位,它包含一个天线阵列,以及UWB信号接收器;可以通过检测定位标签发出的UWB信号,来计算该标签的实际空间位置。在工作过程中,每个传感器独立测定UWB信号的方向角和仰角(AOA);\n而到达时间差信息(TDOA)则必须由一对传感器来测定,而且这两个传感器均部署了时间同步线;这种独特的AOA、TDOA相结合的测量技术,可以构建灵活而强大的定位系统。该传感器是室内定位单元的最重要的组成部分,它被安装在飞艇飞行的有效室内空间里用来对载有定位标签的飞艇进行定位,它们必须连接电源,网络和时间同步线。\n[0058] 首先在大厅上方选取至少4个位置安装该传感器,并设定一个为主传感器,其它为从传感器。每个从传感器通过时间同步线连接到主传感器,从传感器将定位数据传输到主传感器共同处理数据。每个在定位空间内注册过的标签,进入定位空间时标签发出的UWB信号会被一个或多个传感器接收。从传感器解码UWB信号和发送到达的角度和时间差信息,然后将这些数据传输到主传感器。主传感器汇集所有的数据计算出标签的三维空间位置信息,通过有线数据链路将数据传送到UWB定位服务器。并且每台传感器都通过有线以太网连接到网络交换机传输数据。\n[0059] UWB定位服务器通过DHCP协议给每个传感器动态分配IP地址以确定相应的位置坐标。
法律信息
- 2015-08-12
未缴年费专利权终止
IPC(主分类): G05D 1/08
专利号: ZL 201110163042.3
申请日: 2011.06.17
授权公告日: 2013.03.13
- 2013-03-13
- 2012-03-14
实质审查的生效
IPC(主分类): G05D 1/08
专利申请号: 201110163042.3
申请日: 2011.06.17
- 2012-01-25
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2008-10-22
|
2008-01-18
| | |
2
| |
2011-04-27
|
2010-11-09
| | |
3
| |
2009-12-02
|
2009-04-08
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |