著录项信息
专利名称 | 城市暴雨洪水监测与交通控导系统及方法 |
申请号 | CN201310229059.3 | 申请日期 | 2013-06-08 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2013-10-09 | 公开/公告号 | CN103345815A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G08B21/10 | IPC分类号 | G;0;8;B;2;1;/;1;0;;;G;0;8;G;1;/;0;7;;;G;0;8;G;1;/;0;9查看分类表>
|
申请人 | 清华大学 | 申请人地址 | 北京市海淀区-82信箱
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 清华大学 | 当前权利人 | 清华大学 |
发明人 | 刘荣华;魏加华;张大奇 |
代理机构 | 北京清亦华知识产权代理事务所(普通合伙) | 代理人 | 张大威 |
摘要
本发明公开了一种城市暴雨洪水监测与交通控导系统及方法,其中该系统包括:水深数据采集及校正单元,用于通过在积水点采集多种形式的水深数据,进行对比校核分析,得到积水点的积水深度;水深分析预测及排水泵站启闭控制单元,用于结合周边雨量站的区域雨量数据,在水深数据采集及校正单元获得的积水深度的基础上,对积水点的积水深度进行趋势分析并进行滚动修正,然后根据积水深度预测曲线实现排水泵组的自动启闭;以及预警发布及交通控导处理单元,用于根据积水路段安全通行标准,处理得到交通控导信息并发送到控制器,以多种形式对行人车辆做出预警和指示。本发明具有数据可靠、通讯稳定、功能全面、处置专业等优点。
1.一种城市暴雨洪水监测与交通控导系统,其特征在于,包括以下部分:
水深数据采集及校正单元,所述水深数据采集及校正单元通过在积水点采集多种形式的水深数据,进行对比校核分析,得到所述积水点的积水深度,其中,所述水深数据采集及校正单元进一步包括:
摄像头及图像水位尺,其中,所述摄像头对准所述图像水位尺,获得水位图像;
其他水位计量装置,其中,包括雷达水位计和雨量计,获得其他水位数据;
节点通讯模块,用于将所述水位图像和其他水位数据传递给水位计算服务器;
所述水位计算服务器,用于对所述水位图像进行识别,获得图像水位数据,再结合所述其他水位数据进行比较和校正,得到更准确的积水深度;
水深分析预测及排水泵站启闭控制单元,所述水深分析预测及排水泵站启闭控制单元与所述水深数据采集及校正单元相连,所述水深分析预测及排水泵站启闭控制单元结合周边雨量站的区域雨量数据,在所述水深数据采集及校正单元获得的所述积水深度的基础上,对积水点的积水深度进行趋势分析并进行滚动修正,然后根据积水深度预测曲线实现排水泵组的自动启闭;以及
预警发布及交通控导处理单元,所述预警发布及交通控导处理单元与所述水深分析预测及排水泵站启闭控制单元相连,所述预警发布及交通控导处理单元根据积水路段安全通行标准,综合考虑积水点位置分布、所述积水深度预测曲线,处理得到交通控导信息并发送到控制器,以多种形式对行人车辆做出预警和指示。
2.如权利要求1所述的城市暴雨洪水监测与交通控导系统,其特征在于,所述水位计算服务器进一步包括:
图像水位数据获取模块,用于获得图像水位数据,所述图像水位数据获取模块进一步包括图像预处理模块、边缘识别模块、模式识别模块、水面线识别模块和水位值计算模块其他水位数据获取模块,用于获得其他辅助方法获得的其他水位数据;以及水深数据比对模块,用于比对所述图像水位数据和其他水位数据。
3.如权利要求1所述的城市暴雨洪水监测与交通控导系统,其特征在于,所述水深分析预测及排水泵站启闭控制单元进一步包括:
积水点汇流动力学模型,所述积水点汇流动力学模型根据地形数据和回水区各类设施布置数据及排水井位置信息建立模型,所述积水点汇流动力学模型采用网格离散形式;
排水监控装置,用于提供排水能力数据,以及实时采集排水量数据;
面分布雨量数据获取模块,用于通过周边雨量站的区域雨量数据获取面分布雨量数据;
预测计算模块,用于将所述排水能力数据、实时的排水量数据、面分布雨量数据代入所述积水点汇流动力学模型,进行预测分析计算,得到积水深度预测曲线;以及排水泵站启闭控制模块,用于根据所述积水深度预测曲线中的信息,对排水泵站进行控制管理。
4.如权利要求1所述的城市暴雨洪水监测与交通控导系统,其特征在于,所述预警发布及交通控导处理单元进一步包括:
交通控导决策模块,用于根据积水路段安全通行标准,综合考虑积水点位置分布、所述积水深度预测曲线,处理得到交通控导信息,并将所述交通控导信息发送给控制器模块;
控制器模块,用于接收来自所述交通控导决策模块的交通控导信息,控制交通信号灯模块、交通指示屏模块或交通掉头阀模块;
交通信号灯模块,所述交通信号灯模块通过信号灯闪烁对行人车辆做出预警;
交通指示屏模块,所述交通指示屏模块通过显示控导信息对行人车辆做出指示;以及交通掉头阀模块,所述交通掉头阀模块通过控制道路通断对行人车辆做出引导。
5.如权利要求4所述的城市暴雨洪水监测与交通控导系统,其特征在于,所述控制器模块进一步包括:防水机箱、AMR芯片,GPRS/GSM通讯模块、供电模块、防雷模块、信号解析模块、信号交叉校正和串口控制模块。
6.一种城市暴雨洪水监测与交通控导方法,其特征在于,包括以下步骤:
A.在积水点采集多种形式的水深数据,进行对比校核分析,得到所述积水点的积水深度,其中,所述步骤A进一步包括:
A1.设置摄像头及图像水位尺,将所述摄像头对准所述图像水位尺,获得水位图像;
A2.设置其他水位计量装置,其中,包括雷达水位计和雨量计,获得其他水位数据;
A3.将所述水位图像和其他水位数据通信传递给水位计算服务器;
A4.对所述水位图像进行识别,获得图像水位数据,再结合所述其他水位数据进行比较和校正,得到更准确的积水深度;
B.结合周边雨量站的区域雨量数据,在所述积水深度的基础上,对积水点的积水深度进行趋势分析并进行滚动修正,然后根据积水深度预测曲线实现排水泵组的自动启闭;以及
C.根据积水路段安全通行标准,综合考虑积水点位置分布、所述积水深度预测曲线,处理得到交通控导信息并发送到控制器,以多种形式对行人车辆做出预警和指示。
7.如权利要求6所述的城市暴雨洪水监测与交通控导方法,其特征在于,所述步骤B进一步包括:
B1.根据地形数据和回水区各类设施布置数据及排水井位置信息建立模型积水点汇流动力学模型,所述积水点汇流动力学模型采用网格离散形式;
B2.利用排水监控装置获得排水能力数据,以及实时采集排水量数据;
B3.通过周边雨量站的区域雨量数据获取面分布雨量数据;
B4.将所述排水能力数据、实时的排水量数据、面分布雨量数据代入所述积水点汇流动力学模型,进行预测分析计算,得到积水深度预测曲线;以及
B5.根据所述积水深度预测曲线中的信息,对排水泵站进行控制管理。
8.如权利要求7所述的城市暴雨洪水监测与交通控导方法,其特征在于,所述步骤C进一步包括:
C1.根据积水路段安全通行标准,综合考虑积水点位置分布、所述积水深度预测曲线,处理得到交通控导信息;以及
C2.根据所述交通控导信息,控制信号灯闪烁对行人车辆做出预警,控制交通指示屏模块通过显示控导信息对行人车辆做出指示,以及控制交通掉头阀模块通过控制道路通断对行人车辆做出引导。
城市暴雨洪水监测与交通控导系统及方法\n技术领域\n[0001] 本发明涉及水位监测领域和交通控制领域,具体涉及一种城市暴雨洪水监测与交\n通控导系统及方法。\n背景技术\n[0002] 道路交通的发展给人们的出行带来了便利,但是随之而来的是不透水层的增加导\n致降雨的集中快速汇流,这给排水系统带来了很大挑战。近年来,城市内涝问题非常严重,\n而下凹式立交桥积水尤其严重,这给人民的生命财产造成了巨大的损失。对其中的人员财\n产损失事件进行分析,可以发现预警信息缺失是其中的一个重要因素,如果大家在通行的\n时候能得到积水路段的积水深度信息,没有进入的车辆可以避开积水路线,已经进入的车\n辆则需要掉头行驶,距离积水点路口较远的车辆则可以提前选择绕路而行,这样可以在目\n前的排水能力条件下把人员财产损失降低到最低。实现以上功能需要一个高度集成和实时\n的监测预警及控导系统。\n[0003] 现有的涉水交通诱导系统能实现单点的水位监测、雨量监测和图像监测,也能在\n单点实现现地交通控制及指示系统变换,但是存在以下问题:(1)监测手段单一,数据未能\n有效校正;(2)安装方法复杂,比如浮子式水位计、压力式水位计都需要挖侧井,不仅工程\n量大,而且占用地方太大,不适合在城市环境安装;(3)数据未能有效利用,由于数据准确\n性等问题,数据只作为历史数据进行分析用,无法实时的为交通管制提供服务;(4)缺乏有\n效的数据分析及预测手段。数据单一和信息孤岛导致数据不可信,数据不可信导致不能轻\n易发布,同时,数据不可信也导致后续的监测得不到可以进行校核的数据,最后的结果是监\n测数据未能实现有效利用,而现场控导工作又由于数据缺失和信息不畅通而未能及时实现\n警示、断路及开启掉头阀。\n发明内容\n[0004] 本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的商\n业选择。为此,本发明的一个目的在于提出一种准确可靠的城市暴雨洪水监测与交通控导\n系统。本发明的另一目的在于提出一种准确可靠的城市暴雨洪水监测与交通控导方法。\n[0005] 为达到上述目的,根据本发明实施例的城市暴雨洪水监测与交通控导系统,包括\n以下部分:水深数据采集及校正单元,所述水深数据采集及校正单元通过在积水点采集多\n种形式的水深数据,进行对比校核分析,得到所述积水点的积水深度;水深分析预测及排\n水泵站启闭控制单元,所述水深分析预测及排水泵站启闭控制单元与所述水深数据采集及\n校正单元相连,所述水深分析预测及排水泵站启闭处理单元结合周边雨量站的区域雨量数\n据,在所述水深数据采集及校正单元获得的所述积水深度的基础上,对积水点的积水深度\n进行趋势分析并进行滚动修正,然后根据积水深度预测曲线实现排水泵组的自动启闭;以\n及预警发布及交通控导处理单元,所述预警发布及交通控导处理单元与所述水深分析预测\n及排水泵站启闭控制单元相连,所述预警发布及交通控导处理单元根据积水路段安全通行\n标准,综合考虑积水点位置分布、所述积水深度预测曲线,处理得到交通控导信息并发送到\n控制器,以多种形式对行人车辆做出预警和指示。\n[0006] 在本发明的一个实施例中,所述水深数据采集及校正单元进一步包括:摄像头及\n图像水位尺,其中,所述摄像头对准所述图像水位尺,获得水位图像;其他水位计量装置,其\n中,包括雷达水位计和雨量计,获得其他水位数据;节点通讯模块,用于将所述水位图像和\n其他水位数据传递给水位计算服务器;以及所述水位计算服务器,用于对所述水位图像进\n行识别,获得图像水位数据,再结合所述其他水位数据进行比较和校正,得到更准确的积水\n深度。\n[0007] 在本发明的一个实施例中,所述水位计算服务器进一步包括:图像水位数据获取\n模块,用于获得图像水位数据,所述图像水位数据获取模块进一步包括图像预处理模块、边\n缘识别模块、模式识别模块、水面线识别模块和水位值计算模块;其他水位数据获取模块,\n用于获得其他辅助方法获得的其他水位数据;以及水深数据比对模块,用于比对所述图像\n水位数据和其他水位数据。\n[0008] 在本发明的一个实施例中,所述水深分析预测及排水泵站启闭控制单元进一步包\n括:积水点汇流动力学模型,所述积水点汇流动力学模型根据地形数据和回水区各类设施\n布置数据及排水井位置信息建立模型,所述积水点汇流力学模型采用网格离散形式;排水\n监控装置,用于提供排水能力数据,以及实时采集排水量数据;面分布雨量数据获取模块,\n用于通过周边雨量站的区域雨量数据获取面分布雨量数据;预测计算模块,用于将所述排\n水能力数据、实时的排水量数据、面分布雨量数据代入所述积水点汇流动力学模型,进行预\n测分析计算,得到积水深度预测曲线;排水泵站启闭控制模块,用于根据所述积水深度预测\n曲线中的信息,对排水泵站进行控制管理。\n[0009] 在本发明的一个实施例中,所述预警发布及交通指示控制处理单元进一步包括:\n交通控导决策模块,用于根据积水路段安全通行标准,综合考虑积水点位置分布、所述积水\n深度预测曲线,处理得到交通控导信息,并将所述交通控导信息发送给控制器模块;控制器\n模块,用于接收来自所述交通控导决策模块的交通控导信息,控制交通信号灯模块、交通指\n示屏模块或交通掉头阀模块;交通信号灯模块,所述交通信号灯模块通过信号灯闪烁对行\n人车辆做出预警;交通指示屏模块,所述交通指示屏模块通过显示控导信息对行人车辆做\n出指示;以及交通掉头阀模块,所述交通掉头阀模块通过控制道路通断对行人车辆做出引\n导。\n[0010] 在本发明的一个实施例中,所述控制器模块进一步包括:防水机箱、AMR芯片,\nGPRS/GSM通讯模块、供电模块、防雷模块、信号解析模块、信号交叉校正和串口控制模块。\n[0011] 综上所述,本发明实施例的城市暴雨洪水监测与交通控导系统具有数据可靠、通\n讯稳定、功能全面、处置专业等优点,其主要体现在,多数据校正的方法保证了数据的可靠\n性、主备在线方式保证了通讯的稳定性、全面的信号控制及统一调度保证了控导的全面性\n和有效性、具有水动力学模型作为支撑的排水及汇水计算保证了积水点处置的专业性和科\n学性。\n[0012] 为达到上述目的,根据本发明实施例的城市暴雨洪水监测与交通控导方法,包括\n以下步骤:A.在积水点采集多种形式的水深数据,进行对比校核分析,得到所述积水点的\n积水深度;B.结合周边雨量站的区域雨量数据,在所述积水深度的基础上,对积水点的积\n水深度进行趋势分析并进行滚动修正,然后根据积水深度预测曲线实现排水泵组的自动启\n闭;以及C.根据积水路段安全通行标准,综合考虑积水点位置分布、所述积水深度预测曲\n线,处理得到交通控导信息并发送到控制器,以多种形式对行人车辆做出预警和指示。\n[0013] 在本发明的一个实施例中,所述步骤A进一步包括:A1.设置摄像头及图像水位\n尺,将所述摄像头对准所述图像水位尺,获得水位图像;A2.设置其他水位计量装置,其中,\n包括雷达水位计和雨量计,获得其他水位数据;A3.将所述水位图像和其他水位数据通信\n传递给水位计算服务器;以及A4.对所述水位图像进行识别,获得图像水位数据,再结合所\n述其他水位数据进行比较和校正,得到更准确的积水深度。\n[0014] 在本发明的一个实施例中,所述步骤B进一步包括:B1.根据地形数据和回水区\n各类设施布置数据及排水井位置信息建立模型积水点汇流动力学模型,所述积水点汇流力\n学模型采用网格离散形式;B2.利用排水监控装置获得排水能力数据,以及实时采集排水\n量数据;B3.通过周边雨量站的区域雨量数据获取面分布雨量数据;B4.将所述排水能力数\n据、实时的排水量数据、面分布雨量数据代入所述积水点汇流动力学模型,进行预测分析计\n算,得到积水深度预测曲线;以及B5.根据所述积水深度预测曲线中的信息,对排水泵站进\n行控制管理。\n[0015] 在本发明的一个实施例中,所述步骤C进一步包括:C1.根据积水路段安全通行\n标准,综合考虑积水点位置分布、所述积水深度预测曲线,处理得到交通控导信息;以及\nC2.根据所述交通控导信息,控制信号灯闪烁对行人车辆做出预警,控制交通指示屏模块\n通过显示控导信息对行人车辆做出指示,以及控制交通掉头阀模块通过控制道路通断对\n行人车辆做出引导。\n[0016] 综上所述,本发明实施例的城市暴雨洪水监测与交通控导方法具有数据可靠、通\n讯稳定、功能全面、处置专业等优点,其主要体现在,多数据校正的方法保证了数据的可靠\n性、主备在线方式保证了通讯的稳定性、全面的信号控制及统一调度保证了控导的全面性\n和有效性、具有水动力学模型作为支撑的排水及汇水计算保证了积水点处置的专业性和科\n学性。\n[0017] 本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变\n得明显,或通过本发明的实践了解到。\n附图说明\n[0018] 本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变\n得明显和容易理解,其中:\n[0019] 图1是本发明实施例的城市暴雨洪水监测与交通控导系统的结构示意图;\n[0020] 图2是图1中的水深数据采集及校正单元的结构示意图;\n[0021] 图3是图2中的水位计算服务器的结构示意图;\n[0022] 图4是图1中的水深分析预测及排水泵站启闭控制单元的结构示意图;\n[0023] 图5是图1中的预警发布及交通控导处理单元的结构示意图;\n[0024] 图6是图5中的交通信号灯、交通显示屏和交通掉头阀的布局示意图;\n[0025] 图7是图5中的控制器模块的结构示意图;\n[0026] 图8是本发明实施例的城市暴雨洪水监测与交通控导方法的流程图;\n[0027] 图9是图8中的步骤A的详细流程图;\n[0028] 图10是图9中的步骤A4的详细流程图;\n[0029] 图11是图8中的步骤B的详细流程图;\n[0030] 图12是图8中的步骤C的详细流程图。\n具体实施方式\n[0031] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终\n相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附\n图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。\n[0032] 在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于\n描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特\n定的方位构造和操作,因此不能理解为对本发明的限制。\n[0033] 此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性\n或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或\n者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以\n上,除非另有明确具体的限定。\n[0034] 在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机\n械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元\n件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发\n明中的具体含义。\n[0035] 在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”\n可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它\n们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一\n特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征\n在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表\n示第一特征水平高度小于第二特征。\n[0036] 如图1所示,本发明实施例的城市暴雨洪水监测与交通控导系统包括:水深数据\n采集及校正单元10、水深分析预测及排水泵站启闭控制单元20以及预警发布及交通控导\n处理单元30。其中:水深数据采集及校正单元10通过在积水点安装图像水位计实现数据\n采集,采集的视频图像传输到数据处理中心,数据处理中心启动并行调度机制按流程处理\n各个点的信息,对各点采集的图像进行水面线识别和模式图像识别及相互核对,并与相同\n点位的其他手段监测数据进行对比校核分析得到各点的实时水位;水深分析预测及排水泵\n站启闭控制单元20与水深数据采集及校正单元10相连,水深分析预测及排水泵站启闭处\n理单元20通过分析预测系统结合周边雨量站的雨强及历史积水数据,对积水点实时积水\n深度和积水水深进行趋势分析,得到短期内的积水水深变化过程,并进行滚动修正和预测,\n根据积水深度和水深变化率实现排水泵组的自动启闭;预警发布及交通控导处理单元30\n与水深分析预测及排水泵站启闭控制单元20相连,预警发布及交通控导处理单元30根据\n积水路段安全通行标准,将信息通过通讯模块发送到交通控制器,对道路两端的交通控制\n灯做出闪黄及红灯指示信号;将数据发送到交通指示屏,给出当前道路闪黄和红灯断路的\n原因;将数据发送到交通掉头阀控制器,远程控制开启道路掉头控制阀,保证车辆能顺利\n掉头。该系统结合图像数据、图像识别水位数据及雷达、浮子水位计等设备的水深数据,可\n以以多数据多方式集成的方式实现水深数据的自动校正和人工干预核对,结合降雨数据进\n行降雨产流模型计算并预测积水深度并实现水深、水深变化率参数控制排水泵站的自动启\n闭,根据警戒水深和断路水深的标准将信息发送到交通指示屏和交通信号灯,从而实现从\n检测、分析、预测到控制的一套安全通行控导系统,从而最大程度的降低积水路段车辆通行\n的危险。申请人对这三个单元的具体结构介绍如下。\n[0037] 水深数据采集及校正单元10用于通过在积水点采集多种形式的水深数据,进行\n对比校核分析,得到积水点的积水深度。水深数据采集及校正单元10根据实际需要设立在\n各个积水点处。参见图2,水深数据采集及校正单元10进一步包括:\n[0038] 摄像头及图像水位尺110,其中,摄像头对准图像水位尺,获得水位图像;\n[0039] 其他水位计量装置120,其中,包括雷达水位计和雨量计等等,获得其他水位数\n据;\n[0040] 节点通讯模块130,用于将水位图像和其他水位数据传递给水位计算服务器140;\n以及\n[0041] 水位计算服务器140,用于对水位图像进行识别,获得图像水位数据,再结合其他\n水位数据进行比较和校正,得到更准确的积水深度。\n[0042] 其中,水位计算服务器140具体的结构参见图3,进一步包括:包括图像水位数据\n获取模块1410、其他水位数据获取模块1420以及水深数据比对模块1430。图像水位数据获\n取模块用于获得图像水位数据,图像水位数据获取模块进一步包括图像预处理模块、边缘\n识别模块、模式识别模块、水面线识别模块和水位值计算模块。其他水位数据获取模块1420\n用于获得其他辅助方法获得的其他水位数据。水深数据比对模块1430用于比对图像水位\n数据和其他水位数据。各个模块中的详细操作处理见后文中关于本发明的方法的阐述。\n[0043] 水深分析预测及排水泵站启闭控制单元20用于结合周边雨量站的区域雨量数\n据,在水深数据采集及校正单元10获得的积水深度的基础上,对积水点的积水深度进行趋\n势分析并进行滚动修正,然后根据积水深度和水深变化率实现排水泵组的自动启闭。参见\n图4,水深分析预测及排水泵站启闭控制单元20进一步包括:\n[0044] 积水点汇流动力学模型210,该积水点汇流动力学模型210根据地形数据和回水\n区各类设施布置数据及排水井位置信息建立模型,积水点汇流力学模型采用网格离散形\n式。\n[0045] 排水监控装置220,其用于提供排水能力数据,以及实时采集排水量数据。\n[0046] 面分布雨量数据获取模块230,其用于通过周边雨量站的区域雨量数据获取面分\n布雨量数据。\n[0047] 预测计算模块240,其用于将排水能力数据、实时的排水量数据、面分布雨量数据\n代入积水点汇流动力学模型,进行预测分析计算,得到积水深度预测曲线。\n[0048] 排水泵站启闭控制模块250,用于根据积水深度预测曲线中的信息,对排水泵站进\n行控制管理。\n[0049] 预警发布及交通控导处理单元30用于根据积水路段安全通行标准,综合考虑积\n水点位置分布、积水深度以及水深变化率,处理得到交通控导信息并发送到交通控制器,对\n行人车辆做出预警和指示。参见图5,预警发布及交通指示控制处理单元30进一步包括:\n[0050] 交通控导决策模块310,用于根据积水路段安全通行标准,综合考虑积水点位置分\n布、积水深度预测曲线,处理得到交通控导信息,并将交通控导信息发送给控制器模块;\n[0051] 控制器模块320,用于接收来自交通控导决策模块的交通控导信息,控制交通信号\n灯模块、交通指示屏模块或交通掉头阀模块;\n[0052] 交通信号灯模块330,该交通信号灯模块330通过信号灯闪烁对行人车辆做出预\n警;\n[0053] 交通指示屏模块340,该交通指示屏模块340通过显示控导信息对行人车辆做出\n指示;\n[0054] 交通掉头阀模块350,该交通掉头阀模块350通过控制道路通断对行人车辆做出\n引导。\n[0055] 在本发明的一个实施例中,控制交通信号灯模块330、交通指示屏模块340以及交\n通掉头阀模块350的布局安装如图6所示。\n[0056] 在本发明的一个实施例中,控制器模块320的结构如图7所示,进一步包括:防水\n机箱(图中未示出)、AMR芯片,GPRS/GSM通讯模块、供电模块、防雷模块、信号解析模块、信号\n交叉校正和串口控制模块以及其他常见功能模块。\n[0057] 综上所述,本发明实施例的城市暴雨洪水监测与交通控导系统具有数据可靠、通\n讯稳定、功能全面、处置专业等优点,其主要体现在,多数据校正的方法保证了数据的可靠\n性、主备在线方式保证了通讯的稳定性、全面的信号控制及统一调度保证了控导的全面性\n和有效性、具有水动力学模型作为支撑的排水及汇水计算保证了积水点处置的专业性和科\n学性。\n[0058] 如图8所示,根据本发明实施例的城市暴雨洪水监测与交通控导方法,包括以下\n步骤:\n[0059] A.在积水点采集多种形式的水深数据,进行对比校核分析,得到积水点的积水深\n度。\n[0060] 具体地,参加图9,步骤A进一步包括以下步骤:\n[0061] A1.设置摄像头及图像水位尺,将摄像头对准图像水位尺,获得水位图像;\n[0062] A2.设置其他水位计量装置,其中,包括雷达水位计和雨量计,获得其他水位数\n据;\n[0063] A3.将水位图像和其他水位数据通信传递给水位计算服务器;以及\n[0064] A4.对水位图像进行识别,获得图像水位数据,再结合其他水位数据进行比较和校\n正,\n[0065] 得到更准确的积水深度。\n[0066] 其中,参见图10,步骤A4进一步包括以下步骤:\n[0067] A4-1.对图像进行去噪、缺损判断等预处理工作;\n[0068] A4-2.根据水位图像的编号,查询该水位图像对应的识别边框,获取识别区坐标\n值;\n[0069] A4-3.在识别区范围内对水位图像进行边缘识别,提取其中的水位尺区域;\n[0070] A4-4.在水位尺区域,根据图像的光照、黑白模式等阈值参数值提取水面线位置;\n[0071] A4-5.对水面线附近的区域进行数字模式识别和填充块的模式识别,得到填充块\n数量和\n[0072] 分米值;\n[0073] A4-6.在数据库中提取该点的初始校正值,包括初始水位尺区域的尺寸及高度等\n信息,\n[0074] 将A4-3中提取的水面线位置及A4-2中提取的水位尺区域多边形进行比例尺变换\n和计\n[0075] 算,得到该点的图像水位尺水位识别值;\n[0076] A4-7.将模式识别的数字和填充块模式对比结果得到的数值和水面线位置得到的\n水位\n[0077] 值进行对比并校核,得到水位图像识别出来的水位值;以及\n[0078] A4-8.根据编号对应关系,获取该点其他水位数据,对图像水位数据进行校核,得\n到校\n[0079] 核后的水位值,结合该点的高程数据,计算出该积水点的积水深度值。\n[0080] B.结合周边雨量站的区域雨量数据,在积水深度的基础上,对积水点的积水深度\n进行趋势分析并进行滚动修正,然后根据积水深度预测曲线实现排水泵组的自动启闭。\n[0081] 具体地,参见图11,步骤B进一步包括以下步骤:\n[0082] B1.根据地形数据和回水区各类设施布置数据及排水井位置信息建立模型积水点\n汇流动力学模型,积水点汇流力学模型采用网格离散形式;\n[0083] B2.利用排水监控装置获得排水能力数据,以及实时采集排水量数据;\n[0084] B3.通过周边雨量站的区域雨量数据获取面分布雨量数据;\n[0085] B4.将排水能力数据、实时的排水量数据、面分布雨量数据代入积水点汇流动力学\n模型,进行预测分析计算,得到积水深度预测曲线;\n[0086] B5.根据积水深度预测曲线中的信息,对排水泵站进行控制管理。\n[0087] C.根据积水路段安全通行标准,综合考虑积水点位置分布、积水深度预测曲线,处\n理得到交通控导信息并发送到控制器,以多种形式对行人车辆做出预警和指示。\n[0088] 具体地,参见图12,步骤C进一步包括:\n[0089] C1.根据积水路段安全通行标准,综合考虑积水点位置分布、积水深度预测曲线,\n处理得到交通控导信息;\n[0090] C2.根据交通控导信息,控制信号灯闪烁对行人车辆做出预警,控制交通指示屏\n模块通过显示控导信息对行人车辆做出指示,以及控制交通掉头阀模块通过控制道路通\n断对行人车辆做出引导。\n[0091] 综上所述,本发明实施例的城市暴雨洪水监测与交通控导方法具有数据可靠、通\n讯稳定、功能全面、处置专业等优点,其主要体现在,多数据校正的方法保证了数据的可靠\n性、主备在线方式保证了通讯的稳定性、全面的信号控制及统一调度保证了控导的全面性\n和有效性、具有水动力学模型作为支撑的排水及汇水计算保证了积水点处置的专业性和科\n学性。\n[0092] 为使本领域技术人员更好地理解本发明,现进一步对一些技术细节描述如下。\n[0093] 在一个具体实施例中,水深数据采集及校正单元10以图像水位计的图像数据及\n图像识别的水深数据为基础,通过Web Service结构的多数据集成接口程序实现单点多类\n型数据的同期对比分析,从而实现水深数据采集及校核。大致流程为,首先采集图像水深图\n像并进行识别得到图像水位数据,然后集成其他手段监测的数据进行多点比对分析,最后,\n在多数据差超过某一个阈值时,提示出现异常的情况,则再辅以人工图像判断的方式实现\n水面线识别与模式识别结合、图像水深数据与其他水深数据接口、自动识别和人工识别结\n合的“三核一校”的识别校正方法,并将该方法嵌入到并行识别模块和人工交互识别接口模\n块中。其中,图像水位计识别需要经过去噪、滤波、边缘检测、镜头调整及几何变换、水面线\n检测、模式识别、透视扭曲校正及奇异值消除等步骤实现。例如:(1)由于采集到的水位图\n像中含有大量噪声,在进行图像处理之前必须先进行预处理,首先对水位图像进行平滑滤\n波以滤去干扰、噪声及剔去无用信息等,提高信噪比;(2)为了能准确水位线的位置及当前\n刻度,采用candy算子和改进的反向传播算法进行边缘检测,定位水尺边缘线,计算镜头变\n动系数,进行镜头调整和几何校正处理;(3)利用闽值化得到二值图像,提取图像中感兴趣\n的区域,将背景与目标分离,在此基础上进行形态学处理;(4)然后通过离散图像分割法实\n现水面线检测,根据透视扭曲校正曲线得到水面线检测水深;(5)、通过与模式识别的水深\n范围进行比对,并通过数据长系列分析实现奇异值辨别,并通过三次样条插值分段处理技\n术对奇异值过滤和校正,得到一次校正水深值,具体流程如图4、图5、图6所示;(6)得到图\n像水位计水深数据后,根据站点编码获取其他类型水深监测数据,并根据其历史数据分析\n校正后得到的水深值进行对比分析,得到二次校正水深值;(7)如果二次校正水深值和一\n次校正水深值相差超过1cm,则进行内部报警,请求人工干预,人工对比当前图像数据和前\n后8张历史图像数据,得到三次校正水深值。\n[0094] 在一个具体实施例中,水深分析预测及排水泵站启闭控制单元20结合降雨数据、\n水深数据、排水能力数据及DEM地形数据实现积水水深趋势分析及预测,根据检测的实时\n水深和水深变化率,结合每台排水泵机的排水能力数据给出泵机开启和关闭的依据,远程\n发送指令给泵机控制器实现排水泵机的自动启闭。其中,水深分析预测及排水泵站启闭控\n制处理单元20通过积水水深过程曲线分析模块、降雨产流及汇流模块、排水量过程曲线分\n析模块、积水点水压及排水能力模拟模块对积水水深过程进行模拟计算,得到未来10分钟\n的积水水深数据。预测数据以30秒的频率进行更新,实现“自动跟踪、滚动预报、实时校\n正”的积水水深预测体系;同时,根据水深变化过程计算水深变化率,分析积水点的时段汇\n水量,结合实时水深和水深变化率两个参数对泵站群实现启闭控制。通过对水位差的检测,\n自动循环投入各台泵,使每台泵都能处于工作状态。控制原则是使水泵排水量适应汇水量\n的变化,保持泵站进出水量平衡(保持某一范围的水位)的条件下自动进行水泵启停、电机\n转速调节等操作,使水泵在高效点工作。\n[0095] 在一个具体实施例中,预警发布及交通控导处理单元30的控制交通信号灯模\n块、交通指示屏模块以及交通掉头阀模块中,道路两侧的交通指示屏一般来说离积水点有\n300~500米距离,这样便于提前疏散车辆及行人,具体位置示意图见图7。从图中可见,大\n屏安装在道路AB的A点和B点,AB为东西方向道路,其中,C和D为道路叉路口,这样如果\nO点立交桥发生严重积水时,车辆从C和D岔道口进行分流,不会进入到CD段通行。同时监\n控系统将信息发送给交通部门,交通部门控制CD点的信号灯为红灯,从而保证车辆不进入\nCD段,具体位置如图7所示。交通信号灯和掉头阀的安装设计和设备性能不在本发明中,本\n发明要求该设备支持串口通讯协议,提供串口通讯端口及控制信号灯和掉头阀动作的通讯\n协议接口。\n[0096] 流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括\n一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部\n分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺\n序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明\n的实施例所属技术领域的技术人员所理解。\n[0097] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示\n例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特\n点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不\n一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何\n的一个或多个实施例或示例中以合适的方式结合。\n[0098] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例\n性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨\n的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
法律信息
- 2016-01-20
- 2013-11-06
实质审查的生效
IPC(主分类): G08B 21/10
专利申请号: 201310229059.3
申请日: 2013.06.08
- 2013-10-09
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2013-01-09
|
2012-09-20
| | |
2
| | 暂无 |
2012-08-17
| | |
3
| | 暂无 |
2003-11-27
| | |
4
| | 暂无 |
2009-10-12
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |