著录项信息
专利名称 | 指纹图像的校正方法、装置和终端 |
申请号 | CN201680000664.5 | 申请日期 | 2016-03-22 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2016-11-23 | 公开/公告号 | CN106164933A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G06K9/00 | IPC分类号 | G;0;6;K;9;/;0;0查看分类表>
|
申请人 | 深圳市汇顶科技股份有限公司 | 申请人地址 | 广东省深圳市福田区保税区腾飞工业大厦B座13层
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 深圳市汇顶科技股份有限公司 | 当前权利人 | 深圳市汇顶科技股份有限公司 |
发明人 | 丁才武;陈国盛;钟华 |
代理机构 | 上海晨皓知识产权代理事务所(普通合伙) | 代理人 | 成丽杰 |
摘要
本发明提出一种指纹图像的校正方法、装置和终端,该指纹图像的校正方法包括:获取预存的非指纹图像的信息;采集指纹图像,并根据所述非指纹图像的信息,对所述指纹图像进行校正。该方法能够去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。
1.一种指纹图像的校正方法,其特征在于,包括:
获取预存的非指纹图像的信息;所述非指纹图像为丝印在盖板上的logo图案,其中所述盖板通过胶水层贴在包含若干个指纹传感器单元的芯片上,所述logo图案对应的丝印层部分嵌入到所述胶水层中,且所述丝印层和所述胶水层的介电常数不同;所述非指纹图像的信息包括每个指纹传感器单元的增益系数;所述指纹传感器单元为电容式指纹传感器单元;
采集指纹图像,并根据所述非指纹图像的信息,对所述指纹图像进行校正;
其中,所述根据非指纹图像的信息,对所述指纹图像进行校正包括:
所述增益系数包括所述logo图案给所述指纹传感器单元带来的差异性。
2.根据权利要求1所述的方法,其特征在于,在所述获取预存的非指纹图像的信息之前还包括:
计算非指纹图像的信息;
将所述非指纹图像的信息的格式转换为非易失性存储器的存贮格式,并写入指纹模组的非易失性存储器中;
所述获取预存的非指纹图像的信息,包括:
从指纹模组的非易失性存储器中,读取所述存贮格式的非指纹图像的信息;
将所述存贮格式的非指纹图像的信息进行还原。
3.根据权利要求1所述的方法,其特征在于,在所述获取预存的非指纹图像的信息之前还包括:
计算非指纹图像的信息;
将所述非指纹图像的信息写入整机的文件系统中;
所述获取预存的非指纹图像的信息,包括:
从所述文件系统中,读取所述非指纹图像的信息。
4.根据权利要求2或3所述的方法,其特征在于,所述计算非指纹图像的信息,包括:
计算指纹模组中每个指纹传感器单元的增益系数,将所述增益系数作为非指纹图像的信息。
5.根据权利要求4所述的方法,其特征在于,所述计算指纹模组中每个指纹传感器单元的增益系数,包括:
获取指纹模组中每个指纹传感器单元在无输入量时的第一响应数据,将所述第一响应数据作为对应指纹传感器单元的直流分量;
获取导电平面测试头产生的对每个指纹传感器单元都相同的输入量,并获取在所述相同的输入量时每个指纹传感器单元的第二响应数据;
根据所述第二响应数据、所述相同的输入量和所述直流分量,计算每个指纹传感器单元的增益系数。
6.根据权利要求5所述的方法,其特征在于,所述根据所述第二响应数据、所述相同的输入量和所述直流分量,计算每个指纹传感器单元的增益系数的计算公式是:
Kr=(data1-B)/C,其中,data1是第二响应数据,C是相同的输入量,B是直流分量。
7.根据权利要求5所述的方法,其特征在于,所述导电平面测试头是导电平面橡胶头。
8.根据权利要求6所述的方法,其特征在于,所述根据非指纹图像的信息,对所述指纹图像进行校正的计算公式是:
CaliData=(data2-B+Kr*B)/Kr+C*avgKr-C。
其中,CaliData是校正后指纹图像的数据,data2是校正前指纹图像的数据,Kr是增益系数,B是直流分量,C是相同的输入量,avgKr是所有指纹传感器单元的增益系数的平均值。
9.一种指纹图像的校正装置,其特征在于,包括:
获取模块,用于获取预存的非指纹图像的信息;所述非指纹图像为丝印在盖板上的logo图案,其中所述盖板通过胶水层贴在包含若干个指纹传感器单元的芯片上,所述logo图案对应的丝印层部分嵌入到所述胶水层中,且所述丝印层和所述胶水层的介电常数不同;所述非指纹图像的信息包括每个指纹传感器单元的增益系数;所述指纹传感器单元为电容式指纹传感器单元;
校正模块,用于根据所述非指纹图像的信息,对采集的指纹图像进行校正;
其中,所述根据非指纹图像的信息,对所述指纹图像进行校正包括:
所述增益系数包括所述logo图案给所述指纹传感器单元带来的差异性。
10.根据权利要求9所述的装置,其特征在于,还包括:
计算模块,用于计算非指纹图像的信息;
第一存储模块,用于将所述非指纹图像的信息的格式转换为非易失性存储器的存贮格式,并写入指纹模组的非易失性存储器中;
所述获取模块具体用于:
从指纹模组的非易失性存储器中,读取所述存贮格式的非指纹图像的信息;
将所述存贮格式的非指纹图像的信息进行还原。
11.根据权利要求9所述的装置,其特征在于,还包括:
计算模块,用于计算非指纹图像的信息;
第二存储模块,用于将所述非指纹图像的信息写入整机的文件系统中;
所述获取模块具体用于:
从所述文件系统中,读取所述非指纹图像的信息。
12.根据权利要求10或11所述的装置,其特征在于,所述计算模块具体用于:
计算指纹模组中每个指纹传感器单元的增益系数,将所述增益系数作为非指纹图像的信息。
13.根据权利要求12所述的装置,其特征在于,所述计算模块进一步具体用于:
获取指纹模组中每个指纹传感器单元在无输入量时的第一响应数据,将所述第一响应数据作为对应指纹传感器单元的直流分量;
获取导电平面测试头产生的对每个指纹传感器单元都相同的输入量,并获取在所述相同的输入量时每个指纹传感器单元的第二响应数据;
根据所述第二响应数据、所述相同的输入量和所述直流分量,计算每个指纹传感器单元的增益系数。
14.根据权利要求13所述的装置,其特征在于,所述计算模块用于根据所述第二响应数据、所述相同的输入量和所述直流分量,计算每个指纹传感器单元的增益系数的计算公式是:
Kr=(data1-B)/C,其中,data1是第二响应数据,C是相同的输入量,B是直流分量。
15.根据权利要求13所述的装置,其特征在于,所述导电平面测试头是导电平面橡胶头。
16.根据权利要求14所述的装置,其特征在于,所述校正模块用于根据非指纹图像的信息,对所述指纹图像进行校正的计算公式是:
CaliData=(data2-B+Kr*B)/Kr+C*avgKr-C。
其中,CaliData是校正后指纹图像的数据,data2是校正前指纹图像的数据,Kr是增益系数,B是直流分量,C是相同的输入量,avgKr是所有指纹传感器单元的增益系数的平均值。
17.一种终端,其特征在于,包括:壳体、处理器、存储器、电路板和电源电路,其中,电路板安置在壳体围成的空间内部,处理器和存储器设置在电路板上;电源电路,用于为终端的各个电路或器件供电;存储器用于存储可执行程序代码;处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行以下步骤:
获取预存的非指纹图像的信息;所述非指纹图像为丝印在盖板上的logo图案,其中所述盖板通过胶水层贴在包含若干个指纹传感器单元的芯片上,所述logo图案对应的丝印层部分嵌入到所述胶水层中,且所述丝印层和所述胶水层的介电常数不同;所述非指纹图像的信息包括每个指纹传感器单元的增益系数;所述指纹传感器单元为电容式指纹传感器单元;
根据所述非指纹图像的信息,对采集的指纹图像进行校正;
其中,所述根据非指纹图像的信息,对所述指纹图像进行校正包括:
所述增益系数包括所述logo图案给所述指纹传感器单元带来的差异性。
18.一种非易失性计算机存储介质,其特征在于,所述非易失性计算机存储介质存储有一个或者多个模块,以用于执行以下步骤:
获取预存的非指纹图像的信息;所述非指纹图像为丝印在盖板上的logo图案,其中所述盖板通过胶水层贴在包含若干个指纹传感器单元的芯片上,所述logo图案对应的丝印层部分嵌入到所述胶水层中,且所述丝印层和所述胶水层的介电常数不同;所述非指纹图像的信息包括每个指纹传感器单元的增益系数;所述指纹传感器单元为电容式指纹传感器单元;
根据所述非指纹图像的信息,对采集的指纹图像进行校正;
其中,所述根据非指纹图像的信息,对所述指纹图像进行校正包括:
所述增益系数包括所述logo图案给所述指纹传感器单元带来的差异性。
指纹图像的校正方法、装置和终端\n技术领域\n[0001] 本发明涉及指纹识别技术领域,尤其涉及一种指纹图像的校正方法、装置和终端。\n背景技术\n[0002] 指纹识别技术被广泛应用于智能终端、电子安防、公安指纹采集系统等相关领域,已经成为身份认证最主要的方案之一。目前指纹传感技术已基本属于智能终端的标准配置。通常在智能终端上,指纹传感技术是采用指纹模组实现的,指纹模组包括一组指纹传感器单元。为了标识指纹模组的位置,会在指纹模组对应的整机盖板上丝印图案,同时智能终端厂家也存在将自身logo图案丝印在指纹模组上的需求。\n[0003] 由于目前的丝印技术无法做到丝印层是平整的一层,其有logo图案的地方会凸起,需要嵌入到胶水层。丝印层与胶水层的介电常数无法做到完全相同,使得凸起处对应的指纹传感器单元与有其他的指纹传感器单元的差异性变得非常大,接近指纹信号所产生的差异,从而在指纹图像上叠加一个清晰的logo 图像。这就造成了采集的指纹图像不仅包括指纹图像还包括了logo图像,使得采集的指纹图像不准确,影响指纹识别效果。\n发明内容\n[0004] 本发明旨在至少在一定程度上解决相关技术中的技术问题之一。\n[0005] 为此,本发明的一个目的在于提出一种指纹图像的校正方法,该方法可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0006] 本发明的另一个目的在于提出一种指纹图像的校正装置。\n[0007] 本发明的另一个目的在于提出一种终端。\n[0008] 为达到上述目的,本发明第一方面实施例提出的指纹图像的校正方法,包括:获取预存的非指纹图像的信息;采集指纹图像,并根据所述非指纹图像的信息,对所述指纹图像进行校正。\n[0009] 本发明第一方面实施例提出的指纹图像的校正方法,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0010] 为达到上述目的,本发明第二方面实施例提出的指纹图像的校正装置,包括:获取模块,用于获取预存的非指纹图像的信息;校正模块,用于采集指纹图像,并根据所述非指纹图像的信息,对所述指纹图像进行校正。\n[0011] 本发明第二方面实施例提出的指纹图像的校正装置,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0012] 为达到上述目的,本发明第三方面实施例提出的终端,包括:壳体、处理器、存储器、电路板和电源电路,其中,电路板安置在壳体围成的空间内部,处理器和存储器设置在电路板上;电源电路,用于为终端的各个电路或器件供电;存储器用于存储可执行程序代码;处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行以下步骤:获取预存的非指纹图像的信息;采集指纹图像,并根据所述非指纹图像的信息,对所述指纹图像进行校正。\n[0013] 本发明第三方面实施例提出的终端,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0014] 为达到上述目的,本发明第四方面实施例提出的非易失性计算机存储介质,包括:\n获取预存的非指纹图像的信息;采集指纹图像,并根据所述非指纹图像的信息,对所述指纹图像进行校正。\n[0015] 本发明第四方面实施例提出的非易失性计算机存储介质,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0016] 本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。\n附图说明\n[0017] 本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:\n[0018] 图1是本发明实施例中盖板上丝印logo图案后指纹模组各层的示意图;\n[0019] 图2是本发明一个实施例提出的指纹图像的校正方法的流程示意图;\n[0020] 图3是本发明实施例中Kr的计算流程示意图;\n[0021] 图4是本发明实施例中各平面示意图;\n[0022] 图5是本发明另一个实施例提出的指纹图像的校正方法的流程示意图;\n[0023] 图6是本发明另一个实施例提出的指纹图像的校正方法的流程示意图;\n[0024] 图7是本发明一个实施例提出的指纹图像的校正装置的结构示意图;\n[0025] 图8是本发明另一个实施例提出的指纹图像的校正装置的结构示意图;\n[0026] 图9是本发明另一个实施例提出的指纹图像的校正装置的结构示意图;\n[0027] 图10是本发明一个实施例提出的终端的结构示意图。\n具体实施方式\n[0028] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的模块或具有相同或类似功能的模块。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。\n[0029] 图1是本发明实施例中在盖板(cover)上丝印logo图案后指纹模组各层的示意图。\n在生成上述的指纹模组时,包括如下步骤:第一步,在盖板上丝印一层图案;第二步,在第一步的基础上再丝印第一层底色;第三步,在第二步的基础上再丝印第二层底色;第四步,用胶水将第三步得到的模块贴于芯片上,制作成指纹模组。其中,芯片中包含阵列排布的多个指纹传感器单元。\n[0030] 如图1所示,当在盖板上丝印logo图案后,丝印logo层将有部分嵌入到胶水层,由于丝印logo层和胶水层的介电常数不一致,使得从盖板表面到芯片中各指纹传感器单元之间的电容值不同,例如,图1中A、B两点的电容值不同。当指纹模组采集指纹信号时,指纹传感器单元采集到的数据,可看作是手指按压的指纹、盖板表面到芯片中指纹传感器单元之间电容的共同作用的结果,其中后者相对于特定的模组来说是固定的。由于丝印logo层所带来的差异而生成的丝印logo的信号达到了与指纹信号相当的强度,使得采集到的指纹图像中叠加了清晰的logo图像,使得指纹传感器单元采集的指纹图像并不准确,需要消除丝印logo图像的影响。\n[0031] 为了消除丝印logo图像的影响,本发明提出如下的实施例。\n[0032] 图2是本发明一个实施例提出的指纹图像的校正方法的流程示意图。\n[0033] 参见图2,该方法包括:\n[0034] S21:获取预存的非指纹图像的信息。\n[0035] 其中,非指纹图像是指采集指纹图像时,叠加在指纹图像上的非指纹图像。非指纹图像具体可以是上述的logo图像。本发明将以logo图像为例。由于在盖板上丝印logo图像后其信息不会改变,因此,非指纹图像的信息可以是在智能终端出厂前计算并存储的。\n[0036] 一些实施例中,非指纹图像的信息可以是在指纹模组(简称模组)量产测试阶段计算并存储的。或者,\n[0037] 一些实施例中,非指纹图像的信息也可以是在整机生产测试阶段计算并存储的。\n[0038] 具体的应用场景下的示例可以参见后续描述。\n[0039] 不论是在指纹模组量产测试阶段还是在整机生产测试阶段,非指纹图像的信息的获取流程都可以包括:\n[0040] 计算指纹模组中每个指纹传感器单元的增益系数,将增益系数作为非指纹图像的信息。\n[0041] 具体的,可以将每个指纹传感器单元抽象为一个表达式是Y=Kr*X+B的线性系统,X为指纹传感器单元的检测信号(模组表面的输入);Y为指纹传感器单元输出的数据;B值为指纹传感器单元自身电路的直流分量,即没有按压输入量时的响应数据;Kr为每个指纹传感器单元的增益系数。\n[0042] 由于Kr包括了加logo图像所带来的差异性,因此可作为logo图像的信息。\n[0043] 参见图3,增益系数Kr的计算流程包括:\n[0044] S31:获取指纹模组中每个指纹传感器单元在无输入量时的第一响应数据,将第一响应数据作为对应指纹传感器单元的直流分量。\n[0045] 根据上述的公式Y=Kr*X+B可知,当无输入量时,也就是X=0时, Y=B,则当X=0时的响应数据(为了与后续的响应数据区分,这里称为第一响应数据)就是相应指纹传感器单元的直流分量。\n[0046] S32:获取导电平面测试头产生的对每个指纹传感器单元都相同的输入量,并获取在相同的输入量时每个指纹传感器单元的第二响应数据。\n[0047] 导电平面测试头是能够对指纹模组中每个指纹传感器单元产生相同输入量的模块,本实施例中,以导电平面测试头是导电平面橡胶头为例。具体的,该导电平面橡胶头可以具体是有一面是平面的橡胶头、内含导电材料,电阻小于 800欧姆。\n[0048] 其中,可以用导电平面橡胶头的平面按压在指纹模组上,并保持平面橡胶头良好接地,以使得每个指纹传感器单元的输入量X相同。\n[0049] 在每个指纹传感器单元的输入量都相同的情况下,可以分别检测每个指纹传感器单元的响应数据,与上述的第一响应数据区分,此时的响应数据称为第二响应数据。\n[0050] S33:根据第二响应数据、相同的输入量和直流分量,计算每个指纹传感器单元的增益系数。\n[0051] 计算公式是:\n[0052] Kr=(data1-B)/C;\n[0053] 其中,Kr是增益系数,data1是第二响应数据,C是相同的输入量,B是直流分量。\n[0054] 因此,通过上述运算可以计算出每个传感器单元的增益系数,并将该增益系数作为logo图像的信息,以用于后续的指纹图像的校正。\n[0055] S22:采集指纹图像,并根据非指纹图像的信息,对指纹图像进行校正。\n[0056] 采用的校正公式是:\n[0057] CaliData=(data2-B+Kr*B)/Kr+C*avgKr-C\n[0058] 其中,CaliData是校正后指纹图像的数据,data2是校正前指纹图像的数据,Kr是增益系数,B是直流分量,C是相同的输入量,avgKr是所有指纹传感器单元的增益系数的平均值。\n[0059] 上述的校正公式的推算原理如下:\n[0060] 步骤1、只做Kr修正,消除logo图像。\n[0061] 根据已知的Kr由Y=KrX+B求出X,由于只做Kr修正,因此在求得X之后重新加回直流分量B,可得到如下公式。由于Kr中包括了假定输入量C的影响,CaliData’是被引入C输入量的响应数据。\n[0062] CaliData’=(data2-B)/Kr+B。\n[0063] 步骤2、消除C值带入的影响\n[0064] 指纹信号其实可看作是平面的手指按压与手指指纹信号之和,其中手指指纹信号在各指纹传感器单元上产生的数据不同,为有效信号;平面的手指按压产生的数据,对于每个指纹传感器单元来说是完全相同的,类似于导电平面橡胶头的输入值C,二者均是各个指纹传感器单元上的等量输入信号,仅影响整体数据的范围非有效指纹信号,且二者均相差一个固定值Δ。如图4所示,可根据Δ1=Δ2的关系来进行平面校正,消除C值引入的影响。\n图中假定导电平面橡胶头的平面高于手按压,若低于时计算与高于时的计算完全相同。\n[0065] 图4中各平面的表达式可以如表1所示:\n[0066] 表1\n[0067]\n[0068] Δ1=Δ2→导电平面橡胶头按压校正后平面-手按压校正后平面=导电平面橡胶头按压校正前平面-手按压校正前平面,再将表1中各表达式代入可以得到如下计算公式:\n[0069] C-(data2-B)/Kr=Kr*C+B-CaliData\n[0070] 移项化简即可得到\n[0071] CaliData=(data2-B)/Kr+B+Kr*C-C\n[0072] 因为是要改变整体数据的范围,因此上式中Kr*C中的Kr取模组中所有指纹传感器单元增益Kr的平均值avgKr,即可得到最终修正公式如下:\n[0073] CaliData=(data2-B+Kr*B)/Kr+C*avgKr-C\n[0074] 本实施例中,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0075] 进一步的,上述存储Kr可以应用在不同阶段。分别如下实施例所示。\n[0076] 图5是本发明另一个实施例提出的指纹图像的校正方法的流程示意图。本实施例以在指纹模组量产测试阶段获取并存储Kr为例。\n[0077] 参见图5,本实施例的方法包括:\n[0078] S51:计算Kr。\n[0079] 其中,Kr的计算流程可以如图3所示,在此不再详细说明。\n[0080] S52:将Kr的格式转换为非易失性存储器的存贮格式,并写入指纹模组的非易失性存储器中。\n[0081] 根据上述Kr的计算流程可知,Kr可以是小数,但是,通常非易失性存储器中存储的数据是整数形式,因此,需要将小数转换为整数,以存储在非易失性存贮存储器中。\n[0082] 具体的,可以建立小数与整数之间的映射关系,根据该映射关系将Kr的格式转换为非易失性存储器的存贮格式。\n[0083] 可以理解的是,S51-S52可以在指纹模组量产测试阶段执行。\n[0084] 之后,在整机使用阶段可以再执行如下流程:\n[0085] S53:从指纹模组的非易失性存储器中,读取上述存贮格式的Kr,并将该存贮格式的Kr进行还原,得到原始的Kr。\n[0086] 例如,采用原始的Kr转换为存贮格式的Kr的逆向过程,从存贮格式的 Kr恢复为原始的Kr。\n[0087] S54:采集指纹图像,并根据原始的Kr,对采集的指纹图像进行校正。\n[0088] 其中,采用的校正公式是:\n[0089] CaliData=(data2-B+Kr*B)/Kr+C*avgKr-C。\n[0090] 其中,CaliData是校正后指纹图像的数据,data2是校正前指纹图像的数据,Kr是增益系数,B是直流分量,C是相同的输入量,avgKr是所有指纹传感器单元的增益系数的平均值。\n[0091] 通过上述的校正公式可以实现指纹图像的校正。\n[0092] 本实施例中,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。进一步的,通过将Kr转换为非易失性存储器的存贮格式的Kr,可以适用于模组量产阶段计算 Kr并存储。\n[0093] 图6是本发明另一个实施例提出的指纹图像的校正方法的流程示意图。本实施例以在整机生产测试阶段获取并存储Kr为例。\n[0094] 参见图6,本实施例的方法包括:\n[0095] S61:计算Kr。\n[0096] 其中,Kr的计算流程可以如图3所示,在此不再详细说明。\n[0097] S62:将Kr写入整机的文件系统中。\n[0098] 其中,整机的文件系统中可以存储小数形式的数据。\n[0099] 可以理解的是,S61-S62可以在整机生产测试阶段执行。\n[0100] 之后,在整机使用阶段可以再执行如下流程:\n[0101] S63:从整机的文件系统中,读取Kr。\n[0102] S64:采集指纹图像,并根据读取的Kr,对采集的指纹图像进行校正。\n[0103] 其中,采用的校正公式是:\n[0104] CaliData=(data2-B+Kr*B)/Kr+C*avgKr-C。\n[0105] 其中,CaliData是校正后指纹图像的数据,data2是校正前指纹图像的数据,Kr是增益系数,B是直流分量,C是相同的输入量,avgKr是所有指纹传感器单元的增益系数的平均值。\n[0106] 通过上述的校正公式可以实现指纹图像的校正。\n[0107] 本实施例中,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。进一步的,通过将Kr存储到整机的文件系统中,可以适用于整机生产测试阶段计算Kr并存储。\n[0108] 图7是本发明一个实施例提出的指纹图像的校正装置的结构示意图。参见图7,该装置70包括:获取模块71和校正模块72。\n[0109] 获取模块71用于获取预存的非指纹图像的信息;\n[0110] 校正模块72用于采集指纹图像,并根据非指纹图像的信息,对指纹图像进行校正。\n[0111] 一些实施例中,参见图8,该装置70还包括:\n[0112] 计算模块73,用于计算非指纹图像的信息;\n[0113] 第一存储模块74,用于将非指纹图像的信息的格式转换为非易失性存储器的存贮格式,并写入指纹模组的非易失性存储器中;\n[0114] 相应的,获取模块71具体用于:\n[0115] 从指纹模组的非易失性存储器中,读取该存贮格式的非指纹图像的信息;以及,将该存贮格式的非指纹图像的信息进行还原,得到原始的非指纹图像的信息。\n[0116] 一些实施例中,参见图9,该装置70还包括:\n[0117] 计算模块73,用于计算非指纹图像的信息;\n[0118] 第二存储模块75,用于将非指纹图像的信息写入整机的文件系统中;\n[0119] 相应的,获取模块71具体用于:从文件系统中,读取非指纹图像的信息。\n[0120] 不论是图8或图9,其中的计算模块73具体用于:\n[0121] 计算指纹模组中每个指纹传感器单元的增益系数,将增益系数作为非指纹图像的信息。\n[0122] 可选的,计算模块73进一步具体用于:\n[0123] 获取指纹模组中每个指纹传感器单元在无输入量时的第一响应数据,将第一响应数据作为对应指纹传感器单元的直流分量;\n[0124] 获取导电平面测试头产生的对每个指纹传感器单元都相同的输入量,并获取在相同的输入量时每个指纹传感器单元的第二响应数据;\n[0125] 根据第二响应数据、相同的输入量和直流分量,计算每个指纹传感器单元的增益系数。\n[0126] 可选的,计算模块73用于根据第二响应数据、相同的输入量、直流分量,计算每个指纹传感器单元的增益系数的计算公式是:\n[0127] Kr=(data1-B)/C,其中,data1是第二响应数据,C是相同的输入量,B 是直流分量。\n[0128] 可选的,导电平面测试头是导电平面橡胶头。\n[0129] 可选的,校正模块72用于根据非指纹图像的信息,对采集的指纹图像进行校正的计算公式是:\n[0130] CaliData=(data2-B+Kr*B)/Kr+C*avgKr-C。\n[0131] 其中,CaliData是校正后指纹图像的数据,data2是校正前指纹图像的数据,Kr是增益系数,B是直流分量,C是相同的输入量,avgKr是所有指纹传感器单元的增益系数的平均值。\n[0132] 可以理解的是,本实施例的装置与上述方法实施例对应,因此,本实施例装置的各模块的具体内容可以参见方法实施例中的相关描述,在此不再详细说明。\n[0133] 本实施例中,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0134] 图10是本发明一个实施例提出的终端的结构示意图。参见图10,终端 100包括:壳体101、处理器102、存储器103、电路板104和电源电路105,其中,电路板104安置在壳体101围成的空间内部,处理器102和存储器103 设置在电路板104上;电源电路105,用于为终端的各个电路或器件供电;存储器103用于存储可执行程序代码;处理器102通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行以下步骤:\n[0135] 获取预存的非指纹图像的信息;\n[0136] 采集指纹图像,并根据非指纹图像的信息,对指纹图像进行校正。\n[0137] 另外,本发明另一实施例还提出了一种非易失性计算机存储介质,非易失性计算机存储介质存储有一个或者多个模块,以用于执行以下步骤:\n[0138] 获取预存的非指纹图像的信息;\n[0139] 采集指纹图像,并根据非指纹图像的信息,对指纹图像进行校正。\n[0140] 可以理解的是,上述实施例的终端以及非易失性计算机存储介质的具体内容可以参见方法实施例中的相关描述,在此不再详细说明。\n[0141] 本实施例中,通过获取预存的非指纹图像的信息,并根据非指纹图像的信息对采集的指纹图像进行校正,可以去除采集的指纹图像中的非指纹图像部分,提高采集的指纹图像的准确度,从而提高指纹识别效果。\n[0142] 需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是指至少两个。\n[0143] 流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。\n[0144] 应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列 (FPGA)等。\n[0145] 本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。\n[0146] 此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。\n[0147] 上述提到的存储介质可以是只读存储器,磁盘或光盘等。\n[0148] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。\n[0149] 尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
法律信息
- 2019-06-07
- 2016-12-21
实质审查的生效
IPC(主分类): G06K 9/00
专利申请号: 201680000664.5
申请日: 2016.03.22
- 2016-11-23
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2009-12-16
|
2008-06-13
| | |
2
| |
2011-10-05
|
2011-07-21
| | |
3
| |
2010-10-06
|
2010-05-17
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |