著录项信息
专利名称 | 无障碍充电的LED路灯照明系统 |
申请号 | CN201510644265.X | 申请日期 | 2015-10-01 |
法律状态 | 撤回 | 申报国家 | 暂无 |
公开/公告日 | 2015-12-23 | 公开/公告号 | CN105188226A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | H05B37/02 | IPC分类号 | H;0;5;B;3;7;/;0;2查看分类表>
|
申请人 | 蒋桂荣 | 申请人地址 | 江苏省南京市玄武区卫岗1号
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 蒋桂荣 | 当前权利人 | 蒋桂荣 |
发明人 | 蒋桂荣 |
代理机构 | 暂无 | 代理人 | 暂无 |
摘要
本发明涉及一种无障碍充电的LED路灯照明系统,包括LED灯管、DSP控制芯片、风速检测仪、太阳光光强检测仪、充电设备和铅酸蓄电池,充电设备为铅酸蓄电池充电,充电后的铅酸蓄电池为DSP控制芯片、风速检测仪、太阳光光强检测仪和LED灯管提供电力供应,DSP控制芯片与风速检测仪和太阳光光强检测仪分别连接,根据风速检测仪和太阳光光强检测仪的检测结果控制充电设备对铅酸蓄电池的充电。通过本发明,能够根据环境的变化选择不同的充电模式为LED路灯充电,避免出现LED路灯供电不足的情况。
无障碍充电的LED路灯照明系统\n技术领域\n[0001] 本发明涉及LED照明领域,尤其涉及一种无障碍充电的LED路灯照明系统。\n背景技术\n[0002] 当前,LED路灯使用超过6000小时的故障率小于1%。照明在全球约占了19%的用电量,如果全球采用的照明系统效率比现有提升一倍,就可说是相当于移除了欧洲一半的用电量及排热量。由此可见,如何提高LED路灯的节能等级,对应全球能源的节能减排至关重要。\n[0003] 现有技术中,节能型的LED路灯主要为太阳能供电的路灯,通过在太阳能充足的情况下采集太阳能,并转换为电能储存到蓄电池内,以供LED路灯照明时使用,这种方式虽然在一定程度下满足了对LED路灯节能的要求,但在太阳能不充足的区域无法得到应用,同时,现有技术中没有将风能供电用于LED路灯的技术方案,自然,也没有将太阳能供电电路和风能供电电路进行有机结合和灵活切换的用电结构,现有的LED路灯的供电电路尚有进步的空间。\n[0004] 为此,本发明提出了一种无障碍充电的LED路灯照明系统,能够将太阳能供电电路和风能供电电路进行有机结合,同时能够根据环境的各种参数决定太阳能供电电路和风能供电电路的供电切换策略,从而提高LED路灯的充电效率。\n发明内容\n[0005] 为了解决现有技术存在的技术问题,本发明提供了一种无障碍充电的LED路灯照明系统,改善现有的太阳能供电电路,将风能供电电路有机结合到LED路灯的充电电路中,更关键的是,通过风速检测仪和太阳光光强检测仪的检测结果控制充电电路对铅酸蓄电池的充电,这样,从整体上提高了LED路灯系统的节能等级、可靠性以及稳定性。\n[0006] 根据本发明的一方面,提供了一种无障碍充电的LED路灯照明系统,所述照明系统包括LED灯管、DSP控制芯片、风速检测仪、太阳光光强检测仪、充电设备和铅酸蓄电池,充电设备为铅酸蓄电池充电,充电后的铅酸蓄电池为DSP控制芯片、风速检测仪、太阳光光强检测仪和LED灯管提供电力供应,DSP控制芯片与风速检测仪和太阳光光强检测仪分别连接,根据风速检测仪和太阳光光强检测仪的检测结果控制充电设备对铅酸蓄电池的充电。\n[0007] 更具体地,在所述无障碍充电的LED路灯照明系统中,还包括:风速检测仪,用于实时检测当前环境的实时风速;太阳光光强检测仪,用于实时检测当前环境的实时太阳光光强;光电池,设置在灯架顶部,具有电能输出接口,用于输出光电池将太阳能转换后的电能,电能输出接口包括输出正端和输出负端;瞬态电压抑制器,并联在电能输出接口的输出正端和输出负端之间;第一电阻,其一端连接电能输出接口的输出正端,其另一端连接第二电阻的一端;第二电阻,其另一端连接电能输出接口的输出负端;升力风机主结构,设置在灯架顶部,包括三个叶片、偏航设备、轮毂和传动设备;三个叶片在风通过时,由于每一个叶片的正反面的压力不等而产生升力,所述升力带动对应叶片旋转;偏航设备与三个叶片连接,用于提供三个叶片旋转的可靠性并解缆;轮毂与三个叶片连接,用于固定三个叶片,以在叶片受力后被带动进行顺时针旋转,将风能转化为低转速的动能;传动设备包括低速轴、齿轮箱、高速轴、支撑轴承、联轴器和盘式制动器,齿轮箱通过低速轴与轮毂连接,通过高速轴与风力发电机连接,用于将轮毂的低转速的动能转化为风力发电机所需要的高转速的动能,联轴器为一柔性轴,用于补偿齿轮箱输出轴和发电机转子的平行性偏差和角度误差,盘式制动器,为一液压动作的盘式制动器,用于机械刹车制动;风力发电机,与升力风机主结构的齿轮箱连接,为一双馈异步发电机,用于将接收到的高转速的动能转化为风力电能,风力发电机包括定子绕组、转子绕组、双向背靠背IGBT电压源变流器和风力发电机输出接口,定子绕组直连风力发电机输出接口,转子绕组通过双向背靠背IGBT电压源变流器与风力发电机输出接口连接,风力发电机输出接口为三相交流输出接口,用于输出风力电能;整流电路,与风力发电机输出接口连接,对风力发电机输出接口输出的三相交流电压进行整流以获得风力直流电压;滤波稳压电路,与整流电路连接以对风力直流电压进行滤波稳压,以输出稳压直流电压;第三电阻和第四电阻,串联后并联在滤波稳压电路的正负二端,第三电阻的一端连接滤波稳压电路的正端,第四电阻的一端连接滤波稳压电路的负端;第一电容和第二电容,串联后并联在滤波稳压电路的正负二端,第一电容的一端连接滤波稳压电路的正端,第二电容的一端连接滤波稳压电路的负端,第一电容的另一端连接第三电阻的另一端,第二电容的另一端连接第四电阻的另一端;第三电容,并联在滤波稳压电路的正负二端;第五电阻,其一端连接滤波稳压电路的正端;第一开关管,为一P沟增强型MOS管,其漏极与第五电阻的另一端连接,其衬底与源极相连,其源极与滤波稳压电路的负端连接;手动卸荷电路,其两端分别与第一开关管的漏极和源极连接;第一防反二极管,其正端与滤波稳压电路的正端连接,其负端与第一开关管的漏极连接;第二开关管,为一P沟增强型MOS管,其漏极与滤波稳压电路的正端连接,其衬底与源极相连;第二防反二极管,其正端与第二开关管的源极连接;第四电容和第五电容,都并联在第二防反二极管的负端和滤波稳压电路的负端之间;第三防反二极管,并联在第二防反二极管的负端和滤波稳压电路的负端之间;第三开关管,为一P沟增强型MOS管,其漏极与第三防反二极管的负端连接,其衬底与源极相连;第四防反二极管,并联在第三开关管的源极和滤波稳压电路的负端之间;第一电感,其一端与第三开关管的源极连接;第六电容和第七电容,都并联在第一电感的另一端和滤波稳压电路的负端之间;第五防反二极管,并联在第一电感的另一端和滤波稳压电路的负端之间;铅酸蓄电池,并联在电能输出接口的输出正端和输出负端之间,同时其正极与第五防反二极管的负极连接,其负极与第五防反二极管的正极连接;继电器,位于LED灯管和铅酸蓄电池之间,通过是否切断LED灯管和铅酸蓄电池之间的连接来控制LED灯管的打开和关闭;光耦,位于继电器和DSP控制芯片之间,用于在DSP控制芯片的控制下,决定继电器的切断操作;电压检测器,用于实时检测铅酸蓄电池的充电电压;电流检测器,用于实时检测铅酸蓄电池的充电电流;太阳能充电控制器,与电能输出接口、铅酸蓄电池、电压检测器和电流检测器分别连接,在检测到电能输出接口对铅酸蓄电池供电时,当接收到的充电电压小于预设蓄电池电压阈值时,采用恒流充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流大于等于预设蓄电池电流阈值时,采用恒压充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流小于预设蓄电池电流阈值时,采用浮充充电方式对铅酸蓄电池进行充电;DSP控制芯片还与第二开关管的栅极和第三开关管的栅极分别连接,通过在第二开关管的栅极上施加PWM控制信号,确定第二开关管的通断,以控制风力发电机输出接口对铅酸蓄电池的充电的通断,还通过在第三开关管的栅极上施加占空比可调的PWM控制信号,以控制风力发电机输出接口对铅酸蓄电池的充电电压;其中,DSP控制芯片还与风速检测仪和太阳光光强检测仪分别连接;当接收到的实时风速大于等于预设风速阈值且接收到的实时太阳光光强小于预设光强阈值时,断开电能输出接口对铅酸蓄电池的充电,打通风力发电机输出接口对铅酸蓄电池的充电;当接收到的实时风速大于等于预设风速阈值且接收到的实时太阳光光强大于等于预设光强阈值时,根据实时风速超出预设风速阈值的比例和实时太阳光光强超出预设光强阈值的比例决定电能输出接口和风力发电机输出接口对铅酸蓄电池的充电的通断;当接收到的实时太阳光光强大于等于预设光强阈值且接收到的实时风速小于预设风速阈值时,打通电能输出接口对铅酸蓄电池的充电,断开风力发电机输出接口对铅酸蓄电池的充电;其中,针对DSP控制芯片,当实时风速超出预设风速阈值的比例大于等于实时太阳光光强超出预设光强阈值的比例时,断开电能输出接口对铅酸蓄电池的充电,打通风力发电机输出接口对铅酸蓄电池的充电;当实时风速超出预设风速阈值的比例小于实时太阳光光强超出预设光强阈值的比例时,打通电能输出接口对铅酸蓄电池的充电,断开风力发电机输出接口对铅酸蓄电池的充电。\n[0008] 更具体地,在所述无障碍充电的LED路灯照明系统中:风速检测仪设置在灯架顶部。\n[0009] 更具体地,在所述无障碍充电的LED路灯照明系统中:太阳光光强检测仪设置在灯架顶部。\n[0010] 更具体地,在所述无障碍充电的LED路灯照明系统中,所述照明系统还包括:移动硬盘,用于存储预设风速阈值和预设光强阈值。\n[0011] 更具体地,在所述无障碍充电的LED路灯照明系统中:移动硬盘还预先存储了预设蓄电池电流阈值和预设蓄电池电压阈值。\n附图说明\n[0012] 以下将结合附图对本发明的实施方案进行描述,其中:\n[0013] 图1为根据本发明实施方案示出的无障碍充电的LED路灯照明系统的结构方框图。\n[0014] 附图标记:1DSP控制芯片;2LED灯管;3风速检测仪;4太阳光光强检测仪;5充电设备;6铅酸蓄电池\n具体实施方式\n[0015] 下面将参照附图对本发明的无障碍充电的LED路灯照明系统的实施方案进行详细说明。\n[0016] 现有技术中的LED路灯主要依靠市电供电,其耗电成本高,市政部门对LED路灯的施工和管理也消耗大量的运营成本。而且,仅有的一些LED太阳能路灯耗能较高,需要对供电电路进行改良,以及尚缺乏将风能供电电路用于LED路灯的技术方案,自然缺少将二者有机结合并自适应切换的充电结构。\n[0017] 为了克服上述不足,本发明搭建了一种无障碍充电的LED路灯照明系统,将风能供电电路和太阳能供电电路进行有机结合,根据风速检测仪和太阳光光强检测仪的检测结果控制充电系统对LED路灯蓄电池的充电,从而从整体上提高LED路灯的节能水准。\n[0018] 图1为根据本发明实施方案示出的无障碍充电的LED路灯照明系统的结构方框图,所述照明系统包括LED灯管、DSP控制芯片、风速检测仪、太阳光光强检测仪、充电设备和铅酸蓄电池,充电设备为铅酸蓄电池充电,充电后的铅酸蓄电池为DSP控制芯片、风速检测仪、太阳光光强检测仪和LED灯管提供电力供应,DSP控制芯片与风速检测仪和太阳光光强检测仪分别连接,根据风速检测仪和太阳光光强检测仪的检测结果控制充电设备对铅酸蓄电池的充电。\n[0019] 接着,继续对本发明的无障碍充电的LED路灯照明系统的具体结构进行进一步的说明。\n[0020] 所述照明系统还包括:风速检测仪,用于实时检测当前环境的实时风速。\n[0021] 所述照明系统还包括:太阳光光强检测仪,用于实时检测当前环境的实时太阳光光强。\n[0022] 所述照明系统还包括:光电池,设置在灯架顶部,具有电能输出接口,用于输出光电池将太阳能转换后的电能,电能输出接口包括输出正端和输出负端。\n[0023] 所述照明系统还包括:瞬态电压抑制器,并联在电能输出接口的输出正端和输出负端之间;第一电阻,其一端连接电能输出接口的输出正端,其另一端连接第二电阻的一端;第二电阻,其另一端连接电能输出接口的输出负端。\n[0024] 所述照明系统还包括:升力风机主结构,设置在灯架顶部,包括三个叶片、偏航设备、轮毂和传动设备;三个叶片在风通过时,由于每一个叶片的正反面的压力不等而产生升力,所述升力带动对应叶片旋转;偏航设备与三个叶片连接,用于提供三个叶片旋转的可靠性并解缆;轮毂与三个叶片连接,用于固定三个叶片,以在叶片受力后被带动进行顺时针旋转,将风能转化为低转速的动能;传动设备包括低速轴、齿轮箱、高速轴、支撑轴承、联轴器和盘式制动器,齿轮箱通过低速轴与轮毂连接,通过高速轴与风力发电机连接,用于将轮毂的低转速的动能转化为风力发电机所需要的高转速的动能,联轴器为一柔性轴,用于补偿齿轮箱输出轴和发电机转子的平行性偏差和角度误差,盘式制动器,为一液压动作的盘式制动器,用于机械刹车制动。\n[0025] 所述照明系统还包括:风力发电机,与升力风机主结构的齿轮箱连接,为一双馈异步发电机,用于将接收到的高转速的动能转化为风力电能,风力发电机包括定子绕组、转子绕组、双向背靠背IGBT电压源变流器和风力发电机输出接口,定子绕组直连风力发电机输出接口,转子绕组通过双向背靠背IGBT电压源变流器与风力发电机输出接口连接,风力发电机输出接口为三相交流输出接口,用于输出风力电能。\n[0026] 所述照明系统还包括:整流电路,与风力发电机输出接口连接,对风力发电机输出接口输出的三相交流电压进行整流以获得风力直流电压;滤波稳压电路,与整流电路连接以对风力直流电压进行滤波稳压,以输出稳压直流电压。\n[0027] 所述照明系统还包括:第三电阻和第四电阻,串联后并联在滤波稳压电路的正负二端,第三电阻的一端连接滤波稳压电路的正端,第四电阻的一端连接滤波稳压电路的负端;第一电容和第二电容,串联后并联在滤波稳压电路的正负二端,第一电容的一端连接滤波稳压电路的正端,第二电容的一端连接滤波稳压电路的负端,第一电容的另一端连接第三电阻的另一端,第二电容的另一端连接第四电阻的另一端;第三电容,并联在滤波稳压电路的正负二端;第五电阻,其一端连接滤波稳压电路的正端;第一开关管,为一P沟增强型MOS管,其漏极与第五电阻的另一端连接,其衬底与源极相连,其源极与滤波稳压电路的负端连接。\n[0028] 所述照明系统还包括:手动卸荷电路,其两端分别与第一开关管的漏极和源极连接;第一防反二极管,其正端与滤波稳压电路的正端连接,其负端与第一开关管的漏极连接;第二开关管,为一P沟增强型MOS管,其漏极与滤波稳压电路的正端连接,其衬底与源极相连;第二防反二极管,其正端与第二开关管的源极连接;第四电容和第五电容,都并联在第二防反二极管的负端和滤波稳压电路的负端之间;第三防反二极管,并联在第二防反二极管的负端和滤波稳压电路的负端之间;第三开关管,为一P沟增强型MOS管,其漏极与第三防反二极管的负端连接,其衬底与源极相连;第四防反二极管,并联在第三开关管的源极和滤波稳压电路的负端之间;第一电感,其一端与第三开关管的源极连接;第六电容和第七电容,都并联在第一电感的另一端和滤波稳压电路的负端之间;第五防反二极管,并联在第一电感的另一端和滤波稳压电路的负端之间。\n[0029] 所述照明系统还包括:铅酸蓄电池,并联在电能输出接口的输出正端和输出负端之间,同时其正极与第五防反二极管的负极连接,其负极与第五防反二极管的正极连接;继电器,位于LED灯管和铅酸蓄电池之间,通过是否切断LED灯管和铅酸蓄电池之间的连接来控制LED灯管的打开和关闭;光耦,位于继电器和DSP控制芯片之间,用于在DSP控制芯片的控制下,决定继电器的切断操作。\n[0030] 所述照明系统还包括:电压检测器,用于实时检测铅酸蓄电池的充电电压;电流检测器,用于实时检测铅酸蓄电池的充电电流。\n[0031] 所述照明系统还包括:太阳能充电控制器,与电能输出接口、铅酸蓄电池、电压检测器和电流检测器分别连接,在检测到电能输出接口对铅酸蓄电池供电时,当接收到的充电电压小于预设蓄电池电压阈值时,采用恒流充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流大于等于预设蓄电池电流阈值时,采用恒压充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流小于预设蓄电池电流阈值时,采用浮充充电方式对铅酸蓄电池进行充电。\n[0032] 所述照明系统还包括:DSP控制芯片,与第二开关管的栅极和第三开关管的栅极分别连接,通过在第二开关管的栅极上施加PWM控制信号,确定第二开关管的通断,以控制风力发电机输出接口对铅酸蓄电池的充电的通断,还通过在第三开关管的栅极上施加占空比可调的PWM控制信号,以控制风力发电机输出接口对铅酸蓄电池的充电电压。\n[0033] 其中,DSP控制芯片还与风速检测仪和太阳光光强检测仪分别连接;当接收到的实时风速大于等于预设风速阈值且接收到的实时太阳光光强小于预设光强阈值时,断开电能输出接口对铅酸蓄电池的充电,打通风力发电机输出接口对铅酸蓄电池的充电;当接收到的实时风速大于等于预设风速阈值且接收到的实时太阳光光强大于等于预设光强阈值时,根据实时风速超出预设风速阈值的比例和实时太阳光光强超出预设光强阈值的比例决定电能输出接口和风力发电机输出接口对铅酸蓄电池的充电的通断;当接收到的实时太阳光光强大于等于预设光强阈值且接收到的实时风速小于预设风速阈值时,打通电能输出接口对铅酸蓄电池的充电,断开风力发电机输出接口对铅酸蓄电池的充电。\n[0034] 其中,针对DSP控制芯片,当实时风速超出预设风速阈值的比例大于等于实时太阳光光强超出预设光强阈值的比例时,断开电能输出接口对铅酸蓄电池的充电,打通风力发电机输出接口对铅酸蓄电池的充电;当实时风速超出预设风速阈值的比例小于实时太阳光光强超出预设光强阈值的比例时,打通电能输出接口对铅酸蓄电池的充电,断开风力发电机输出接口对铅酸蓄电池的充电。\n[0035] 可选地,在所述照明系统中:风速检测仪设置在灯架顶部;太阳光光强检测仪设置在灯架顶部;所述照明系统还包括:移动硬盘,用于存储预设风速阈值和预设光强阈值;\n移动硬盘还预先存储了预设蓄电池电流阈值和预设蓄电池电压阈值。\n[0036] 另外,LED路灯具有环保无污染、耗电少、光效高、寿命长等特点,因此,LED路灯将成为节能改造的最佳选择。LED路灯与常规路灯不同的是,LED光源采用低压直流供电、由GaN基功率型蓝光LED与黄色合成的高效白光,具有高效、安全、节能、环保、寿命长、响应速度快、显色指数高等独特优点,可广泛应用于道路。外罩可用制作,耐高温达135度,耐低温达-45度。大功率LED光源已可以满足一般路灯所需的。一般的高压钠灯的光效是100LM/W,常用的大功率LED是50-60LM/W,用国外最好的LED芯片可以达到80LM/W,发光效率越高,意味着节能效果越好,这也是选择LED路灯最重要的指标之一。\n[0037] 在实际的道路照明灯具的设计中,可采用在基本设定每一个LED设射方向的前提下,把每一个LED用球形万向节固定在灯具上,当灯具使用于不同的高度和照射宽度时,可通过调整球形万向节使每一个LED的照射方向都达到满意的结果。在确定每一个LED的功\n2\n率、光束输出角度时,可根据E(lx)=I(cd)/D(m)(光强和照度距离平方反比定律),分别计算出各LED在基本选定光束输出角度时应该具备的功率,并且可以通过调整各LED的功率以及LED驱动电路输出给每一个LED不同的功率来使每一个LED的光输出都达到预计值。这些调整手段都是采用LED光源的道路灯具所特有的,充分利用这些特点就能实现在满足道路路面的照度和照度均匀度的前提下降低照明功率密度,达到节能的目的。\n[0038] 采用本发明的无障碍充电的LED路灯照明系统,针对现有技术中LED路灯的节能效果无法进一步可靠提升的技术问题,改造并有机结合太阳能供电电路和风能供电电路,使其能用于LED路灯的可靠充电,同时,引入风速检测仪和太阳光光强检测仪,根据他们检测结果控制LED路灯充电模式的切换,从而解决上述技术问题。\n[0039] 可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
法律信息
- 2018-07-20
发明专利申请公布后的视为撤回
IPC(主分类): H05B 37/02
专利申请号: 201510644265.X
申请公布日: 2015.12.23
- 2016-01-20
实质审查的生效
IPC(主分类): H05B 37/02
专利申请号: 201510644265.X
申请日: 2015.10.01
- 2015-12-23
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2010-12-01
|
2010-07-21
| | |
2
| |
2009-10-14
|
2009-05-21
| | |
3
| |
2012-02-29
|
2011-10-13
| | |
4
| |
2014-09-10
|
2014-06-11
| | |
5
| |
2012-01-18
|
2011-09-08
| | |
6
| |
2011-09-14
|
2011-05-23
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |