1.一种用于测量样本气体中的预选气体的浓度的室,包括:
轴,具有前端和后端;
壳体,围绕所述轴并与所述轴的外表面隔开,提供环形吸收区域;
泵,用于使所述样本气体通过所述环形吸收区域;
第一环形反射镜,支撑在所述轴的前端上,在所述第一环形反射镜中具有入口孔;
第二环形反射镜,支撑在所述轴的后端上,在所述第二环形反射镜中具有出口孔;
光源,支撑在所述第一环形反射镜的前方,当受到激励时,产生光束,所述光束穿过所述入口孔,进入所述环形吸收区域,以在所述第一环形反射镜和所述第二环形反射镜之间反复地反射,所述光束的第一部分在多次反射后,通过所述出口孔射出;
第一光电检测器,用于指示进入所述入口孔的所述光束的强度;
第二光电检测器,支撑在所述第二环形反射镜的后方,与所述出口孔对准,以接受所述光束的第一部分的碰撞;以及
连接到所述第一光电检测器和第二光电检测器的装置,通过所述装置测量所述光束的吸收,从而通过所述装置可以确定所述样本气体中的所述预选气体的浓度。
2.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,包括:
窗,在所述光源与所述入口孔之间,以所述光束的入射角进行定位,部分所述光束被所述窗反射以碰撞所述第一光电检测器。
3.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,包括第三光电检测器,定位于所述第二环形反射镜以外,以接收所述光束的第二部分,所述光束的第二部分为在所述环形吸收区域中传播比所述光束的第一部分较短的光程之后穿过所述第二环形反射镜的光束,从而可以进行对应于高浓度级别的浓度检测。
4.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,包括所述轴中的通路,将所述前端和所述后端与所述轴周围的所述环形吸收区域连通,样本气体通过所述轴流入,通过并流出所述环形吸收区域。
5.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,其中所述壳体由围绕所述轴的第一半壳和第二半壳形成,所述第一半壳和所述第二半壳设置在所述轴周围,配置用来限定所述环形吸收区域。
6.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,包括热电冷却器,热耦合至所述光源和控制电路,从而控制所述光源的温度。
7.根据权利要求6所述的用于测量样本气体中的预选气体的浓度的室,包括基底,所述光源安装在所述基底上;并包括热敏电阻,其安装在所述基底上,提供对所述基底温度的测量,进而测量所述光源的温度,所述热敏电阻连接到所述控制电路。
8.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,其中所述光源为激光发射二极管。
9.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,其中所述光源为发光二极管。
10.根据权利要求6所述的用于测量样本气体中的预选气体的浓度的室,其中所述光源和所述热电冷却器安装在支撑到所述室上的腔室中,并包括换热器,其中所述腔室与所述换热器热隔绝。
11.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,包括被连接的泵,用来通过管道将样本气体吸入并使其通过所述环形吸收区域,并且包括与所述环形吸收区域和所述泵串联的过滤器系统,其中限定所述泵、管道和过滤器系统并确定其大小,从而使所述环形吸收区域中的样本气体的压力在0.1到2.0个大气压之间。
12.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,包括热耦合到所述光源的换热系统、用于使样本气体流过所述环形吸收区域的泵,还包括用于使所述样本气体流过所述换热系统的管道。
13.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,包括:
全球定位系统,提供确定所述室的地理位置的信号;以及
显示器,连接到装置和所述全球定位系统,提供在不同地理位置的所测气体浓度的显示。
14.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,其中所述光源安装在光源安装结构中,所述光源安装结构支撑到所述室上所述第一环形反射镜的前方,其中所述光源安装结构可以绕垂直平面中的两个偏离轴枢转,从而可以将所述光束与所述入口孔以及所述第一环形反射镜和所述第二环形反射镜精确校准。
15.根据权利要求14所述的用于测量样本气体中的预选气体的浓度的室,其中通过一第一平板片和一第二平板片形成在径向平面内的铰链,所述铰链提供用于实现所述枢转的所述两个偏离轴。
16.根据权利要求8所述的用于测量样本气体中的预选气体的浓度的室,其中所述激光发射二极管被脉冲电流所激励,所述脉冲电流具有普通的锯齿形,从而每个电压脉冲发射的光的频率覆盖预选波段。
17.根据权利要求1所述的用于测量样本气体中的预选气体的浓度的室,其中,以车辆运输所述室,并且其中,在车辆运动中,通过从车辆外部不断抽取样本气体持续地更换样本气体。
利用吸收光谱法检测气体的装置\n[0001] 本申请是2002年9月6日提交的申请号为02829531.5且发明名称为“利用吸收光谱法检测气体的方法”的原案申请的分案申请。\n[0002] 专利申请参考\n[0003] 本申请不涉及在任何国家的共同未决专利申请。\n[0004] 缩微胶片参考\n[0005] 本申请未在任何缩微胶片附录中提及。\n技术领域\n[0006] 本发明涉及一种检测环境中样本气体中的预选气体的装置。\n背景技术\n[0007] 通过传输气体以在世界上分配能源是一种常用的方法,所传输气体通常为天然气,但在世界上的某些地方也传输人造煤气以用于家庭和工厂。通常气体通过地下管线传输,这些地下管线具有分支以延伸到家庭和其它建筑物中,用于为空间供暖和热水提供能源。实际上,在世界的每一个大城市里都存在着成千上万英里长的气体管线。气体之所以便于使用是因为其非常易燃,因而需要重点关注气体的泄漏。由此原因,人们做出很大努力以提供用于检测微量气体的装置,从而可以确定泄漏的位置以进行维修。\n[0008] 已知的一种可以成功地检测环境中微量气体的系统是运用吸收光谱法进行检测的。在该技术中,使选定频率的光束穿过样本气体,其中该选定频率的光束可以被这种装置所能检测的特定气体高度吸收。该光束的吸收率将作为样本气体的浓度级别指标。世界上天然气以及大部分用于房间供暖和热水的人造煤气的基本成分均为甲烷。通过启动能够被甲烷高度吸收的某一频率的光束,并使光束穿过该样本气体,就可以确定样本气体中的甲烷浓度级别。\n[0009] 为了提高通过光谱吸收法检测低浓度级别的气体的灵敏度,必须使光束穿过相对较长的样本气体通路。换而言之,当光束穿过样本的长度增加时,装置检测气体的微量浓度级别的灵敏度会提高。\n[0010] 显然,如果要使光束穿过一个非常长的含有样本气体的管道,那么需要这种长管道的装置就会非常笨重,因而难以携带。为了解决该问题,有人设计了这样的系统,其中光束在相对的反射镜之间反复地反射,从而延长了光束在样本气体中曝露的长度,通过此方法,可以大大减少该装置的尺寸。典型的吸收室为一个细长的圆筒,其中反射镜安置在相对两端,光通过位于一个反射镜中的孔引入。因为背景知识涉及到在具有对置的反射镜的检测室中使光线多次传播的光学装置的运用,故可参考论文《大孔径的长光程》(LongOptical Paths of Large APERTURE),J.White J.著,Opt.Soc.Am.,第32卷,285-288页,1942年\n5月。关于此主题的背景知识的另一实例请参考论文《球面反射镜干涉计中的离轴光径》(Off-AxisPaths in Spherical Mirror Interferometers),Herriott等著,AppliedOptics第3卷和,523-526页。另外还可参考论文《重叠的光延迟线》(Folded Optical Delay Lines),Herriott等著,Applied Optics,第4卷,883-889页,1965年8月。因为Herriott在发展采用具有对置的反射镜(光束在室中反复地反射)的室的吸收光谱法上的早期工作,所以这种装置常常被称为“赫里奥特室(Herriott cell)”。此处本发明涉及到在用于检测所选气体(如甲烷)的赫里奥特型的室的结构、操作以及应用中的改进和创新。特别地,此处本发明提供了使用比其它现有装置和系统更便携、更坚固以及更灵敏的装置来用于检测和测量预选气体的浓度级别的方法和系统。\n[0011] 关于本发明的基本主题的进一步的背景知识,可以参考以下早期出版的美国专利和其它出版物:\n[0012] \n 专利号或\n 参考号 发明人 名称\n 3,253,226 Herriott等 Optical Msaer Amplifier\n 3,437,954 Herriott等 Optical Delay Line Devices\n 3,550,039 Herriott等 Optical Delay System\n 4,934,816 Silver等 Laser Absorption Detection Enhancing\n Apparatus and Method\n 5,002,351 Wolfum等 Fusion Splicer for Optical Fibers\n 5,121,405 Negus Alignment Control System for Lasers\n 5,291,265 Kebarbian Off-axis Cavity Absorption Cell\n 5,528,040 Lehmann Ring-down Cavity Spectroscopy Cell\n Using Continuous Wave Excitationfor\n Trace Species Detection\n 5,550,636 Hagans等 Self-tuning Method for Monitoring the\n Density of a Gas Vapor Component\n Using a Tunable Laser\n 5,637,872 Tulip Gas Detector\n 5,946,095 Henningsen Natural Gas Detection Apparatus and\n 等 Method Operable in a Moving Vehicle\n 5,949,537 Inman等. In-line Cell for Absorption Spectroscopy\n 6,064,488 Brand等 Method and Apparatus for In Situ Gas\n Concentration Measurement\n 6,157,033 Chudnovsky Leak Detection System\n US PUB Diekmann Infrared Optical Gas Sensor\n 2002/0011568\n US PUB Pilgrim等 Wavelength Agile External Cavity Diode\n 2002/0015427 Laser\n US PUB Gutin Tunable Diode Laser System,Apparatus\n 2002/0018496 and Method\n US PUB Schley Method and Device for Determining the\n 2002/0040590 Gas Properties of a Combustible Gas\n US PUB Warburton Method and Apparatus for Determining\n 2001/0045119 Concentration of a Gas\n FR PUB Ronge等 Procede et Dispositif de Trace\n d’Impuretes dans un Echantillon de gaz\n au Moyen d’une Diode Laser a\n Semiconducteur\n FR PUB Takeuchi等 Water Content Analysis Device Using\n H3-260859 Semiconductor Laser,Double\n Wavelength Differential Absorption\n Method\n FR PUB Takeuchi等 Analyseur de Teneur en eau Utilisant un\n H5-99845 Laser a Semiconducteur\n[0013] 其它出版物:\n[0014] “Folded Optical Delay Lines”,Herriott等,Applied Optics,1965年8月。\n[0015] ″Laser Beams and Resonators,″Kogelnik等,Applied Optics,1966年10月\n[0016] ″ Narrow Optical Interference Fringes for Certain Setup Conditions inMultipass Absorption Cells of the Herriott Type″,McManus等,AppliedOptics,\n1990年3月1日。\n[0017] ″Measurement of Water Vapor Pressure and ActiVity Using InfraredDiode Laser Absorption Spectroscopy″,S.A.Bone、P.G.Cummins、P.B.Davies和S.A.Johnson著,Applied Spectroscopy,第47卷,no6,1993年。\n[0018] ″ Diode-Laser Absorption Technique for Simultaneous Measurements ofMultiple Gas Dynamic Parameters in High-speed Flows ContainingWater Vapor″,M.P.Arroyo、S.Langlois和R.K.Hanson著,AppliedOptics,第33卷,no 15,1994年。\n[0019] ″Diode Laser Measurements of H2O Line Intensities AndSelf-Broadening Coefficients in the 1,4-μM Region″,S.Langlois、T.P.Birbeck和R.K.Hanson著,Journal of Molecular Spectroscopy,第163卷,27-42页,1994年。\n[0020] ″Absorption Measurements of Water Vapor Concentration,Temperature,and Line-shape Parameters Using a Tunable InGaAsP Diode Laser″,M.P.Arroyo和R.K.Hanson著,Applied Optics,第32卷,no 30,1993年。\n[0021] ″Infrared Diode Laser Determination of Trace Moisture in Gasses″,J.A.Mucha和L.C.Barbalas著,ISA Transactions,第25卷,no 3,1986年。\n[0022] ″ Application of Tunable Diode Lasers in Control of High Pure h h h\nMaterialTechnologies ″,G.G.Devyatykh 、V.A.Khorshev 、G.A.Maksimov 、A h\nA.I.Nadezhdinskii 和S.M.Shapin 著,Preprint。\n[0023] ″Laser Absorption IR Spectrometer for Molecular Analysis of HighPurity Volatile Substances.Detection of Trace Water Concentrations inOxygen Argon and Monogermane ″,G.G.Devyatykh、G.A.Maksimov、A.I.Nadezhdinskii、V.A.Khorshev 和S.H.Shapin著,SPIE,第1724卷,″TURNABLE Diode Laser Applications″。\n[0024] ″Application of FM Spectroscopy in Atmospheric Trace GasMonitoring:\nA Study of Some Factors Influencing the InstrumentDesign″,P.Werle、K.Josek和F.Slemr著,SPIE,第1433卷,″Measurement Of Atmospheric Gases″,1991年。\n[0025] ″Stable Isotope Analysis using Tunable Diode Laser Spectroscopy″,Joseph F.Becker、Todd B.Sauke和MAX.Loewenstein,AppliedOptics,第31卷,no 12,\n1992年。\n[0026] ″High Sensitivity Detection of Trace Gases using Sweep Integrationand Tunable Diode Lasers″,D.T.Cassidy和J.Reid著,AppliedOptics,第21卷,no 14,1982年。\n[0027] ″ Atmospheric Pressure Monitoring of Trace Gases using Tunable DiodeLasers″,D.T.Cassidy和J.Reid著,Applied Optics,第21卷,no 7,1982年。\n[0028] ″Near Infrared Diode Lasers Measure Greenhouse Gases″,A.Stanton和C.Hovde著,Laser Focus World,1992年8月。\n[0029] ″Airborne Measurements of Humidity Using A Single Mode Pb SaltDiode Laser″,Joel A.Silver和Alan C.Stanton,Applied Optics,第26卷,no 13,1987年。\n[0030] ″ Diode Laser Spectroscopy for On Line Chemical Analysis ″,David S.Bomse、David C.Hovde、Daniel B.Oh、Joel A.Silver和Alan C.Stanton,SPIE,第1681卷,″Optically Based Method for ProcessAnalysis″,1992年。\n[0031] ″ Two-mirror Multipass Absorption Cell ″,J.Altmann、R.Baumgart 和C.Weitkamp,Applied Optics,第20卷,no 6,1981年。\n[0032] ″Long Optical Paths of Large Aperture″,J.White著,J.Opt.Soc.Am.,第\n32卷,285-288页,1942年5月。\n[0033] ″Folded Optical Delay Lines″,Herriott等著,Applied Optics,第4卷,\n883-889页,1965年8月。\n[0034] ″Off Axis Paths in Spherical Mirror Interferometers″,D.Herriott、H.Kogelnik和R.Komper著,Applied Optics,第3卷,no 4,1964年。\n发明内容\n[0035] 一种检测样本气体中的预选气体(如甲烷)的方法,包括如下步骤:将样本气体流连续地穿过检测装置中的封闭检测区域。在检测装置中,对光源(如激光发射二极管或发光二极管)进行激励,以发射由预选气体高度吸收的光频的光束。通过使光束通过位于赫里奥特型室中的间隔的反射镜之间反复地反射,将光束穿过封闭的检测区域中的样本气体流,从而使得光束在样本气体中的传播长度大大地延长。测量该光束的吸收,以指示预选气体是否存在。\n[0036] 典型的光源(如激光二极管或发光二极管)发射的光的频率受光源温度的影响,因此必须控制光源温度。本文公开的该发明中提出,样本气体流在穿过检测区域后被引导通过一个热控制装置。\n[0037] 该热控制装置包括具有冷却片的吸热装置,冷却片暴露于样本气体流中,光源安装成与珀耳帖(peltier)元件相接触,珀耳帖元件进而与吸热装置之间建立起热传导关系。热敏电阻感应吸热装置的温度,并向微处理器发送控制信号,微处理器接着向电源发送温度调节指令,然后电源向调整光源温度的帕耳帖元件提供调整过的电流。\n[0038] 通过使用中心轴部件,显著地改进了本发明的气体检测装置所用的赫里奥特型室,该中心轴部件为样本气体提供了封闭的环形检测区域,光束在该封闭的环形检测区域中穿过。\n[0039] 本发明提供了一种采用三个光电检测器的系统,其包括:(a)基准光电检测器;\n(b)多程(multipath)光电检测器;以及(c)单程或直通光电检测器。通过采用这三种参照光电检测器的测量数据,相比于典型的现有装置的可测精度,可以对样本中的气体浓度进行更宽范围的精度确定。\n[0040] 这里所用的赫里奥特型吸收光谱室进行了重要的改进,包括光束通过第一反射镜上的孔射入该室,并在多次穿行后,从第二反射镜上的孔射出,以碰撞多程光电检测器。同时提出在该光束单次通过之后,测量其吸收。通过光束分离器(beam splitter)窗实现基准光电检测器的起动。\n[0041] 本发明提供了非常便携且坚固的系统,该系统容易适用于安装在车辆中,使得在车辆移动时,可以从环境中连续提取检测样本,并循环通过该检测系统,以使操作者能迅速地调查大面积的地理区域。这种用在车辆上的非常便携的系统提供了以全球定位监测器确定坐标的读出值,从而可以快速并精确地绘制出地理区域的气体浓度级别。\n[0042] 通过以下详细的说明以及权利要求,并结合附图,可以使本发明得到更好地理解。\n附图说明\n[0043] 图1为表示用于通过吸收光谱法进行气体检测的本发明的系统的基本组成部件的示意图。本发明的该系统可以用于检测极低浓度级别的预选气体,如甲烷。该系统特点在于便携且坚固。该系统可以手提进入一个封闭或狭窄的环境中,或在行驶中的车辆上使用,通过该系统可以生成表示地理区域的气体浓度级别的地图。\n[0044] 图2为根据本发明改进的赫里奥特型气体检测室的前端部的局部正视剖视图。图中示出了采用铰合板的光束校准系统。\n[0045] 图3为用于通过吸收光谱法检测气体浓度的改进的赫里奥特型室的正视剖视图,图中示出了本发明的改进之处。\n[0046] 图4为本发明所用的气体检测室的正视侧视图,并示出了该室的外观,该室上具有设置好的外壳部件,在室中提供了一个环形气体腔,样本气体从其中流过。\n[0047] 图5为沿图4的5-5线的侧视图,示出了相对于图4中的视图绕自身轴线旋转90°的气体检测室。图5以剖视图示出了该室的中间部以显示环形样本气体通道。\n[0048] 图6为沿图5的6-6线的剖视图。此图中未显示图4和图5所示的壳体套。\n[0049] 图7为该室前部的分解图,该室前部容纳有光源,如激光二极管,并示出了为校准光束使其进入样本气体腔而提供的支撑结构。\n[0050] 图8为激光二极管与控制该二极管温度的有关部件之间关系的示意图。\n[0051] 图9为当该光束在环形样本气体腔中的对置反射镜之间来回反复反射时表示光束在室中的环形腔中所取路径的示意图,样本气体腔提供了通过室中的样本气体精确测量光束的吸收的装置。\n[0052] 图10为用于控制赫里奥特型室所用光源的温度以提高系统检测所选气体的精度的部件的方块图。\n[0053] 图11为具有使用铰合板的光束校准系统的气体检测室的外形轴测图。\n具体实施方式\n[0054] 参见附图,首先来看图1,其示出了可以用于实施本发明的方法的一个系统的主要部件的方块图。该系统的核心为随后将详细描述的室10,该室10提供了一种环境,在其中光束12穿过样本气体,并在其中测量光束的吸收。\n[0055] 下面将要描述到,在该发明中,光束由激光二极管提供,这种情况下光束12为激光束。然而,本发明也可以采用提供非相干光束的光源来实施。非相干光源的一种实例是发光二极管(LED)。激光二极管提供大体上同一光频的相干光束,其特点为激光束不会分散到非相干光束那样的程度。使用激光(如以激光二极管产生激光)具有优越性,但使用激光二极管并不是绝对必要的。比较起来,激光二极管比LED要昂贵。在某些应用中,LED已能令人满意地工作。在整个本说明书中所用到的“激光束”或“激光二极管”,包括了“光束”或“LED”。\n[0056] 支撑室10上的是一个包括激光二极管14的结构,该激光二极管在受到激发时产生激光束12。由标记14所表示类型的激光二极管为温度敏感型的激光二极管。即,由激光二极管14产生的激光的频率根据该二极管的温度而变化。对于测量精度而言,将激光束\n12的频率控制在一个很窄的范围内是很重要的,这意味着必须控制激光二极管的温度。为此,将采用方块16所指示的温控系统,随后将对此予以详细描述。\n[0057] 本发明的作用是通过使激光束12穿过样本气体,并测量该激光束的吸收,从而确定该样本气体中的气体浓度级别。此技术通常称为“激光吸收光谱法”。室10,包括固定在其上的部件,提供了一个可调的激光二极管吸收分光镜。样本气体通过提供的气流通道穿过室10。样本气体通过在入口管20的入口18引入,并经过滤器22流入室10的内部。该气体通过室10流到与温控系统16连接的出口管24。该气体通过气泵26穿过该系统移动,并流到排出管28,通过该排出管,样本气体返回到环境中。\n[0058] 激光束12穿过一个窗(下面将会描述到该窗)。一部分光束穿过第一反射镜44中的孔30。标号12A表示光束在室10中的第一次传播。一部分激光束12被该窗反射,被反射的光束用标号12B表示。将光电探测器32安放为接收拦截的反射光束12B,并提供表示激光束12光强的电信号。通过导线34将光电探测器32发出的电信号传递到放大器36,放大器36将信号输入模拟数字转换电路38,该模拟数字转换电路在导线40上提供基准数字输入信号,导线40将基准数字输入信号输入微处理器42。\n[0059] 室10通常被称作“赫里奥特”室。该名称源于室的发明者,该室利用对置的反射镜将光束在反射镜之间来回往复反射,从而可以在相对较短长度的装置上获得相对较长的光程,在该室中,光径为环形模式(circular pattern)。虽然总的来说属于“赫里奥特”型,但本发明的室10有很多改进和创新,下面将对此予以详细描述。\n[0060] 室10使用第一反射镜44和与其相对的第二反射镜46。在第一反射镜44中提供小孔30,激光束穿过该小孔,并在室中形成首先与第二反射镜46相碰撞的光束12A。光束\n12A在穿过小孔48射出第二反射镜46之前,在反射镜44与反射镜46之间相继反射若干次。射出的光束50碰撞上第二光电检测器52,第二光电检测器52在导线54上产生信号,输入放大器电路56,放大器电路56输入到第二模拟数字转换器58,转换器58在连接到微处理器42的导线60上提供数字信号。\n[0061] 此发明的方法和实施该方法的系统用于检测以下所选气体,例如甲烷、丁烷、丙烷、乙烷、氧气、氢气、氮气、H2O、氟化氢、氯化氢、硼化氢、硫化氢、氨、CO、CO2、NO、NO2以及SF6。该系统通过将激光二极管更换为能够发出最易为所关注的不同所选气体吸收的频率的光的激光二极管,可以用来检测不同的所选气体。当使用发光二极管(而不是激光二极管)时,其所发出光的光谱更宽,可以检测更多种不同的气体,但通常只能检测较高的浓度。本文将详细描述该系统,因为该系统在检测甲烷时特别奏效,而甲烷是天然气和大多数人造燃气的基本成分。如果在气体分配系统中发生泄漏,通常可以通过检测是否存在甲烷来定位泄漏点。因此,室10使用的激光二极管14所发出的光束其频率对应着可以为甲烷高度吸收的光频。样本气体通过入口18吸入,经过入口管20流入并通过室10,与样本气体中的甲烷量成比例地吸收(即衰减)光束12A的光强。\n[0062] 光束50在已经在反射镜44与46之间反射很多次之后,从第二反射镜46中的孔\n48中射出。下面将描述怎样实现该方式。从光束12A进入室10直到其通过孔48射出,该光束经历多次反射,这意味着该光束传播了相当于室10长度很多倍的相对较长的光程,进而意味着为了通过样本气体中存在的甲烷吸收光束,提供了足够的光程。\n[0063] 通过将在导线34上的信号强度与在导线54上的信号强度进行比较,可以确定穿过室10的样本气体中甲烷的浓度。通过在微处理器42中的精确计算,可以极高精度地确定穿过室10的样本气体中甲烷的含量,并可表示为如百万分之几。甲烷含量检测精度可低至百万分之几,以至,理想地,低至百万分之一或低于百万分之一。\n[0064] 如前所述,从激光二极管14发出的光束12穿过第一反射镜44中的第一孔30,以在室10中提供光束12A。当室10中的激光束12A初次传播并遇到第二反射镜46时,大部分光束强度反射回第一反射镜44,然后在第一反射镜44与第二反射镜46之间反复反射,最终穿过第二窗48射出,形成出射光束50。然而,当光束12A碰撞第二反射镜46时,少部分的光束强度即使没有孔或窗,也会穿过该反射镜,因为大部分反射镜表面并不是100%可反射的。光束12A的穿过第二反射镜46的部分提供了第二出射光束62,其接合到第三光电检测器64。这在导线66上产生一电信号,送到第三放大器68,该第三放大器输入一模拟数字转换器70,数字转换器70通过导线72将数字信号发送到微处理器42。本文中该发明的重要特征在于使用从室10中发出的两单独的出射光束50和62以启动光电检测器52和\n64。显然,为测量穿过室10的气体中低浓度级别的甲烷,只要求出现在导线40和60上的输入微处理器42的信号。对样本气体中非常低浓度级别的甲烷的检测很重要,这种检测是通过在光束射出窗48之前对激光束应用长光程来实现的,然而,如果要求检测更宽范围的甲烷,该配置不可行。如果穿过室的样本气体中存在的甲烷浓度级别相对较高,那么激光束在射出窗48之前,基本上将被全部吸收,以至没有保留足够的光束光强用于计算样本气体中高浓度甲烷的百分比。通过使用第三光电检测器64可以解决这个问题。第二出射光束\n62在样本气体中传播相对短的距离,因此即使当检测气体中的甲烷百分比是光电检测器\n52可测甲烷百分比的很多倍时,光束62的衰减仍发生在可供测量的程度内。换而言之,使用两个单独的出射光束50和62,其中一个光束具有在检测气体中的短光程,另一光束具有长光程,这样使得系统的甲烷可测浓度范围大大扩展了。\n[0065] 在本发明的优选实施例中,不是通过稳态电压激励出激光光束12,以产生稳态光束,而是相反地,通过锯齿波形的电流使激光二极管14受到脉动激励。激光二极管的每次脉动产生脉冲激光光束12,其光频在所选带宽上变化。每次电流脉冲产生的光,其光频在该装置设计用来检测的特定气体的最大吸收光频上下变化。\n[0066] 因为激光二极管14是通过特定脉冲电流波形所激励,结果光电检测器32、52和\n64(见图1)产生的信号特征为该特定波形。因此,在微处理器42中,通过以光电检测器32的信号将光电检测器52和64的信号进行电子分离,以检测吸收。\n[0067] 图2到图7表示室10的优选实施例的细部。如上所述的室10通常称之为赫里奥特型,然而它却带有显著而重大的改变、创新、以及改进。\n[0068] 图3为示出室10基本结构的剖视图。该图示出了提供第一反射镜44和第二反射镜46的结构。室10的独特特征如图2、图3、图5和图6中所示,使用了一个中心轴部件74,其具有与第一反射镜44接合的第一端76和与第二反射镜46接合的第二端77。为实现其目的,中心轴部件74的外表面78的轮廓为中部的直径小于端部76和77的直径,下面将予以描述。\n[0069] 在如图4所示的配置中,中心轴74外套有壳体80,其由装配在一起的两个配合部分80A和80B形成。壳体80A、80B提供一个与中心轴外表面78间隔开的内表面82,这样提供了一个细长的环形区域84。在由样本气体通过的该环形区域84中,发生源自激光二极管的光的吸收,并通过该吸收检测样本气体中的甲烷浓度。\n[0070] 如图2所示,在第一反射镜44中形成第一孔30。源自激光二极管14的光束12首先穿过安装在位于透镜支撑板89的孔口中的透镜86,然后与斜窗88相撞。在斜窗88处,部分光束12被反射,以提供参照图1讨论过的激光光束12B。光束12B穿过透镜90,并与第一光电检测器32相遇。光束12穿过斜窗88,然后穿过在第一反射镜44中的第一孔30。\n[0071] 如图3左侧所示,第二反射镜46具有如前所述的孔48,该孔与在盖件94中的通路\n92成直线,光束通过该通路从室中射出。根据图1所描述的光电检测器52与通路92成一直线。在图3中,第一反射镜44中的孔30和第二反射镜46中的孔48显示为仿佛这些孔处于穿过轴76的纵向轴线(未显示)的垂直平面中。这仅仅是为了说明起见,而这些孔并不要求在同一平面中,而且如图9所示(现在将对此予以讨论),孔30和48通常不在同一平面中。\n[0072] 图9图示了光束入射室10的光传播模式,其中,第一反射镜44和第二反射镜46表示为圆圈,以小圆圈标示第一孔30和第二孔48。用14表示的激光二极管产生如上所述的激光光束12A,光束12A穿过第一孔30进入室中。光束12A碰撞第二反射镜46。如上所述,部分光束12A穿过第二反射镜46,产生光束62,光束62碰撞第三光电检测器64。大部分光束12A如箭头96所示被反射。光束在反射镜44和46之间来回传播很多次,并最终从第二反射镜46的孔48中射出,参照图1所述,射出的光束标示为标记50。光束50碰撞第二光电检测器52。\n[0073] 图9图示出环绕中心轴的环形区域中在反射镜44与46之间来回多次传播的独特光束路径。该配置提供了一种具有极长光程的非常坚固的室结构,通过该室结构激光光束传播穿过持续供给样本气体的环形区域。该长光程通过光束的多次反射实现,能够提供激光光束吸收的高度的敏感度,且同时能够提供一种紧凑、坚固且便携的系统以用于检测预选气体,如甲烷。\n[0074] 如图9所示,光束12A以相对于轴74的假想纵向轴线的斜角射入室。这导致光束的入射点碰撞对置的反射镜44和46,在这些反射镜径向周围行进。光束通过环形吸收区域\n84在相对的反射镜44与46之间传播,该环形吸收区域的横截面面积在反射镜表面处最大,在两反射镜之间的中间点处最小。因此,如图3所示,轴74的直径在该轴的相对两端76与\n77之间的中间点处最小。\n[0075] 如图4、图5、图6和图7所示,激光二极管14由标号98所表示的激光安装结构支撑。图2和图11中示出不同的激光安装结构。图7为激光安装结构98的重要部分的分解图,该激光安装结构通过如图4和图5所示的结构支架100支撑在室10的一端。最好见图\n7,激光安装结构98包括支撑底座102,该支撑底座具有整体形成的平行部分104和106。\n即,支撑底座包括绕垂直轴铰合到底座102的整体形成部分104上,而整体形成部分106绕水平轴铰合到整体形成部分104上。此独特的双轴配置使得可使源自激光二极管的光束校准得到非常精确的调整,以提供如图9所示的临界光径,从而可以实现多光径,于是光束准确地从室中射出,与光电二极管52和64会遇。本发明的双轴光束校准系统的另一实施例将在后面参照图2和图11进行描述。\n[0076] 如图7所示,换热器件108具有整体的向前延伸的凸柱部110。通过隔环112将换热器件108固定到支撑底座102上。一个非金属绝缘体114设置在换热器件108的前表面上。下面将更详细地描述,在换热器件凸柱部110的前表面116上安装有帕耳帖装置118、基底120、热敏电阻122和激光二极管14。凸柱部110、帕耳帖装置118、基底120、热敏电阻\n122和激光二极管14之间的结构关系在图8中示出。\n[0077] 如图7所示,换热器件108的后端包括整体管状部124,在管状部中包含换热器片\n126(见图7和图8)。如图8所示的电阻128,与起到金属排热作用的凸柱部110具有导热关系。\n[0078] 本发明的一个重要方面为用于控制激光二极管14的温度的方法和系统。为了通过光束的光谱吸收有效地测量气体浓度,将光束的频率控制在窄范围内是很重要的。可以将激光二极管设计为提供最易为甲烷分子吸收的频率的光。然而,如果频率与临界吸收频率不同,那么就会降低该系统的精度。此外,激光二极管发出的光的频率受该二极管的温度的影响。图8和图10最好地示出用于控制激光二极管14的温度的本发明的系统。图10示意性示出激光二极管14与其热控制部件之间的关系。激光二极管14固定在基底120上,例如通过使用导热粘合剂。热敏电阻122也固定在基底120上。将基底120粘合到起热电降温部件作用的帕耳帖元件118上。如图7所示,通过如焊接等方法将帕耳帖元件118热接合至作为换热器件108金属排热部的凸柱部110上。该凸柱部进而与一个或多个换热器片126热接触,如图2、图7和图8所示。而且如图8和图10的电气图所示,电阻128也与凸柱部110热连接。\n[0079] 根据图10,示出了热控制部件之间的电的相互关系。热敏电阻122提供与基底120的温度成比例的电压信号,而基底120的温度与激光二极管14的温度相关。将源自热敏电阻122的信号输入电流发生器电路130,然后将源自电流发生电路130的信号输入模拟数字转换器132,该模拟数字转换器的输出将传送到微处理器138。温度选择器电路136提供与基底120以及激光二极管14的所需温度直接相关的电压输出,将其输出被送入微处理器\n138。在微处理器138中,将该源自温度选择器136的信号与由热敏电阻122所检测到的数字编码的温度相比较,以提供输出控制信号到导线140上。将导线140上的信号输入加热模式“开/关”开关142。当开关为“开”时,将该信号输入电阻128,电阻128的作用是根据要求向换热器凸柱部110供热。\n[0080] 将源自微处理器138的输出送入帕耳帖控制信号生成器144,接着输入数字模拟转换器146,将该数字模拟转换器的输出送入帕耳帖电流生成器148,接着该帕耳帖电流生成器向帕耳帖元件118供给控制电流。\n[0081] 在大部分操作情形下,本发明换热器系统的功能为冷却激光二极管14。即,激光二极管通常明显产生热量,因此通常必须消除源自激光二极管的热,以将其保持在要求的工作范围内。因此,在正常工作条件下不会用到电阻128,因为电阻128的唯一功能就是在必要时向换热器凸柱部110供热,以便通过帕耳帖元件118将热传导至基底120,从而向激光二极管14提供温暖环境。\n[0082] 因为通常有必要在典型的环境温度下冷却激光二极管,所以本发明的一个重要方面是将受测气体用作冷却介质的思路。如图1所示,受测气体在穿过室10后,将被引导至图8和图10中所示的热调节系统16,图7中还示出了该系统的元件。流过室10(在其中确定受测气体的甲烷浓度)的受测气体还可以方便地用作冷却介质。如图7所示和图8示意性所示,受测气体通过冷却系统流出室10并经过安装在壳体管状部124中的冷却片126。\n[0083] 由激光二极管在选定电压下消耗的电流可以用作激光二极管温度的指示。即,当激光二极管温度上升时,对电流流动的电阻也上升。该特征可以用作调节该二极管温度的方法。通过记录该二极管所消耗的电流,就可以使用图8和图10所示的温控系统。因此,可以用与激光二极管14串联的电流表取代热敏电阻122,以向测量电流生成器130提供控制信号,以产生合适的信号输入A/D转换器132,并进而输入微处理器138。使用合适的软件,微处理器可以通过帕耳帖装置118或电阻128来控制温度的修正。尽管此系统有良好的理论可行性,然而在实践中的问题是,很难用二极管电压和电流以实现所要求的二极管温度控制精度。\n[0084] 参考图3结合图10,其中很好地示出了样本气体流入和流出室10所采取的路径。\n在将样本气体吸入入口管20并通过过滤器22之后,该气体通过在盖件94中虚线所示的通路150进入室10。气体从通路150,进入位于中心轴74的第二端77中的轴向凹槽152。多个间隔开的小内径通路154在径向平面中从轴向凹槽延伸到轴74的表面78,以与环形吸收区域84连接。该多个孔口154是用来均匀分布进入吸收区域84一端的样本气体入口。\n[0085] 气体在吸收区域84中传输,从轴74的第二端77传输到第一端76。在轴74的第一端76附近具有多个位于径向平面中的通路156,这些通路与轴向凹槽158相通。\n[0086] 出口通路160与轴向凹槽158相通,样本气体通过该出口通路流出室10。图2和图3示出了将轴向凹槽158连接到环形吸收区域84的多个小的通路156。样本气体在通过通路160流出室10后,流经一个长的软管162(见图5)。如图5所示,一个端盖164将换热器件108的后端封闭,该端盖具有径向通路以接受软管162的端部。端盖164中的第二通路168(见图7)提供与图1中所见的气泵26的连通,可以通过诸如图1所示(未在其它图中示出)的软管170以实现该连通。样本气体通过泵26的作用吸入并运动到环形吸收区域84中,其方式为样本气体沿整个环形通路周围均匀分布,从而当光束在对置的反射镜44与46之间反复地反射时,光束吸收的机会将均匀分布,在一种配置中,其中的气体通路最有效地形成于轴74的端部中。\n[0087] 本文中所示出和描述的用于测量预选气体(如甲烷)浓度的该室通常被设置为在大气压或接近于大气压下操作,然而该系统在约.1到约2.0个大气压下也能顺利地运行。\n基本上,所示该系统并不打算用于检测高压样本气体。\n[0088] 本发明的该气体检测系统特别适用于进行地理区域的勘测,以查找何处发生了气体泄漏。由于通过壳体部件80A和80B环绕中心轴74得到具有用于光束传播的相对较长光程的相对较小容积的样本气体检测区域,以此实现封闭的环形吸收区域,所以本文中该气体检测系统特别地适用于作为勘测装置使用。通过气泵26的持续动作,可以将检测区域中的样本气体快速地更换。借助这些独特特征的优点,使本发明的该气体检测系统适于在某一地理区域上以相对较快的速度移动(相比于现有气体检测系统)。特别地,可以通过以一定速度行驶的车辆使本文中所描述的该气体检测装置四处移动,这使得能够在相对较短的时间里检测到在相对较广大的地理区域中的可能的气体泄漏。\n[0089] 当通过车辆运输本发明的该系统时,重要的是要将图1中所示的样本气体入口18伸出车辆的外面,使得当车辆从地理区域的一部分行驶到另一部分时,可以从当地环境中将气体持续地抽入到该系统中。\n[0090] 为了提供可能有重要意义的关于区域气体浓度的准确信息,本发明的该系统特别适于使用图1所指示的全球定位系统。全球定位系统172与微处理器42连通。此外,通过使用连接到微处理器42上的打印机174及全球定位系统172,就可以生成带有检测气体浓度级别的打印输出的地图。使用者可以勘测以下区域,诸如工厂、乡村、工业园、大城市的部分、或任何感兴趣的区域,并获得标示有特定气体(如甲烷)浓度级别的地图。以此方式,使用者可以快速地确定存在气体浓度上升的区域,然后可使本发明的该装置返回该区域,在该区域中携带该装置(相对于用车辆运输该装置)以在附近进行更详细的检测从而确定何处发生气体泄漏。\n[0091] 图2和图11示出了激光安装结构的另一实施例,该结构具有不同的双轴安装方式,用于校准激光二极管发射的光束。一个结构支架176固定在室10的前端。支架176支撑基座板178(见图11)。一个可调板180通过薄的、柔韧的第一铰合片182铰合至基座板\n178上。一个薄的、柔韧的第二铰合片184(见图2和图11)支撑具有管状部188的换热器件186,该管状部作为换热器壳体,其外端被端盖190封闭。管状部188容纳换热器片126。\n管状部188具有与图7所描述的通路166和168相对应的使样本气体流动的通路166A和\n168A。\n[0092] 当激光光束与室10成直线时,铰合片182和184在其弹性限度内弯曲,因此可以起到与参照图7所描述的支撑板102的平行部分104和106的整体形成的铰链同样的作用。\n这两种结构都允许激光二极管绕在垂直面中的轴转动。因为加工制造的经济性,所以图2和图11的激光安装结构优于图7的激光安装结构。另外,这两个实施例作用方式相同,做同样的事,并实现同样的结果。\n[0093] 尽管本文在一定程度上具体地描述了本发明,很显然对结构的细节和部件的安装可以进行很多改变,但这些都不脱离本公开文本的范围和精神。应当明白,本文所阐释的实施例是为出于举例说明的目的,而不是限定本发明,本发明仅仅受本文所附权利要求书的范围所限定,包括与其每一要素等同的全部范围。
法律信息
- 2015-10-28
未缴年费专利权终止
IPC(主分类): G01N 21/31
专利号: ZL 200910000113.0
申请日: 2002.09.06
授权公告日: 2011.02.16
- 2011-02-16
- 2009-08-26
- 2009-07-01
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| | 暂无 |
1997-06-04
| | |
2
| | 暂无 |
1996-04-16
| | |
3
| | 暂无 |
1994-09-07
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |