著录项信息
专利名称 | 基于全局式优化策略的无线传感器网络节点定位方法 |
申请号 | CN200810224999.2 | 申请日期 | 2008-10-29 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2010-06-09 | 公开/公告号 | CN101726725A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G01S5/02 | IPC分类号 | G;0;1;S;5;/;0;2查看分类表>
|
申请人 | 中国科学院自动化研究所 | 申请人地址 | 北京市海淀区中关村东路95号
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 中国科学院自动化研究所 | 当前权利人 | 中国科学院自动化研究所 |
发明人 | 王硕;谭民;郝志凯 |
代理机构 | 中科专利商标代理有限责任公司 | 代理人 | 梁爱荣 |
摘要
本发明涉及一种基于全局式优化策略的无线传感器网络节点定位方法,是基于节点间距离和相对角度的无线传感器网络的节点定位方法,通过测量获得无线传感器网络中1跳节点之间的距离和相对角度,进而推算网络中节点间距离,利用古典多维尺度测量、极大似然估计和全局优化策略对无线传感器网络中所有节点位置进行定位。本发明的优点是在定位过程中直接测量得到节点间的距离或通过测量值计算节点间的距离,与估计距离相比有更高的精度,因此节点的定位精度就更高。此外,在计算节点的相对坐标时,除了初始点及其1跳节点利用古典多维尺度计算方法外,其余节点的相对坐标都是用极大似然估计法计算得到的,计算量要小。
1.基于全局式优化策略的无线传感器网络节点定位方法,其特征在于,包括步骤如下:
步骤S1:通过测量得到无线传感器网络中1跳节点间的距离和相对角度;
步骤S2:利用1跳节点间的距离和相对角度计算无线传感器网络内2跳节点间的距离;
步骤S3:节点间通过通讯选取1跳节点最多的节点作为初始点;
步骤S4:将古典多维尺度测量与极大似然估计相结合计算无线传感器网络中节点的相对坐标和全局优化策略对无线传感器网络中所有节点位置进行定位;
对无线传感器网络中所有节点位置进行定位包括步骤如下:
步骤S41:利用古典多维尺度测量方法计算初始点及其1跳节点形成的子网络中节点的相对坐标并建立相对坐标系,并把这些节点称为已定位节点,其余未计算出自身相对坐标的节点称为未定位节点;
步骤S42:已定位的节点向周围未定位的节点广播自身的坐标,最远传到已定位节点的2跳节点为止;
步骤S43:设定n>1的初始点n跳节点,根据接收到的已定位的(n-1)跳和(n-2)跳节点的相对坐标,再利用极大似然估计法计算初始点的n跳节点的相对坐标,计算出自身相对坐标的节点为已定位节点,其余未计算出自身相对坐标的节点称为未定位节点,当(n-2)为0时,表示初始点本身;
步骤S44:若无线传感器网络内的所有节点都已完成定位或满足预先设定的停止条件,则转入步骤S45,否则返回步骤S42;
步骤S45:无线传感器网络内的每个节点基于其1跳节点和2跳节点的相对坐标建立目标函数,采用最速下降法对无线传感器网络中所有节点的相对坐标估计进行全局优化,当满足误差设定条件时转入步骤S46;
步骤S46:利用装有全球定位系统的参考节点的已知绝对坐标及其通过计算获得的相对坐标求取相对坐标系到绝对坐标系的变换矩阵;
步骤S47:利用变换矩阵将无线传感器网络节点的相对坐标转换为绝对坐标。
2.根据权利要求1的定位方法,其特征在于,当无线传感器网络中所有节点的相对坐标都计算出后或满足预先设定的停止条件时,开始对无线传感器网络中所有节点的相对坐标进行全局优化。
3.根据权利要求1的定位方法,其特征在于,所述全局优化策略是利用1跳节点或2跳节点间的距离,建立整个网络的全局优化目标函数f为:
其中节点i和节点j均为无线传感器网络中的节点且互为1跳或2跳节点,dij表示1跳节点间的实测距离或根据1跳节点间距离和相对角度计算出的2跳节点间距离,pij为节点i和j间的估计距离:
上式中(xi,yi,zi)和(xj,yj,zj)分别为节点i和j的相对估计坐标。
4.根据权利要求1的定位方法,其特征在于,采用最速下降法优化节点i的相对坐标,节点i的相对坐标的第k+1次优化估计值(xi(k+1),yi(k+1),zi(k+1))表示为:
其中Δ表示修正系数; 为目标函数相对于xi,yi,zi的偏导数;无线
传感器网络中所有节点经过第k+1次修正后计算目标函数f(k+1)并判断是否满足式:
|f(k)-f(k+1)|≤ε,若满足,则结束优化过程,否则各节点发布其第k+1次优化估计值,继续进行优化,其中ε为一个小的正实数值,k≥0。
基于全局式优化策略的无线传感器网络节点定位方法\n技术领域\n[0001] 本发明属于无线传感器网络领域,涉及无线传感器网络中节点的相对定位和绝对定位方法。\n背景技术\n[0002] 无线传感器网络中的定位方法可分为非距离式定位和距离式定位两类。非距离式定位是利用节点间的跳(英文名为hop)数或求区域质心来计算节点的坐标。N.Bulusu和J.Heidemann提出了一种非距离式定位的中心算法。传感器网络中包含参考节点和普通节点,通过计算k个参考节点的中心来估计普通节点的位置或坐标。这种方法误差较高,要得到较高的定位精度需要很多参考节点且均匀分布在网络的外围。T.He和C.Huang提出的APIT(Approximation Point-in-Triangulation Test)方法是通过计算不同三角形的重叠区域的中心来确定节点的坐标。APIT适用于节点随机分布且不要求各节点通讯能力完全一样的情况,定位精度在很大程度上取决于参考节点的数量和重叠区域的大小。距离式定位一般利用节点间的距离来计算节点的相对位置,定位精度在很大程度上取决于节点间测距的精度。D.Niculescu和B.Nath提出了一种估计节点间距离的方法,这种方法适用于节点规则分布的情况,在节点随机分布的情况下估计距离会产生较大误差。Y.Shang和W.Ruml提出了利用MDS计算节点坐标的方法:MDS-MAP(C)、MDS-MAP(C,R)、MDS-MAP(P)和MDS-MAP(P,R)。这四种方法在节点的连通度高和参考节点比例大时可取得很好的定位效果。此外也有利用移动参考节点对网络中固定节点进行定位的方法。非距离式定位方法的定位精度较低,现有的距离式定位方法的精度虽然比非距离式定位方法的高,但由于在估计节点距离时利用了最短路径等方法而不是直接测量或计算得到的,因此精度也不是很高。\n发明内容\n[0003] 为了解决现有技术精度不高的问题,本发明目的是利用测量获得的无线传感器网络中1跳节点间的距离和相对角度信息,通过计算方法实现对网络中所有节点进行相对定位或绝对定位,为此本发明提供一种基于全局式优化策略的无线传感器网络节点定位方法。\n[0004] 为达到所述的目的,本发明提供的基于全局式优化策略的无线传感器网络节点定位方法,首先要测量无线传感器网络中1跳节点之间的距离和相对角度,利用1跳节点之间的距离和相对角度计算2跳节点之间的距离,再根据以上信息,利用古典多维尺度计算方法(MDS方法)和极大似然估计相结合的方法计算所有节点的相对坐标,利用全局优化策略对所有节点的相对坐标进行优化,通过坐标变换将相对坐标转换为绝对坐标。\n[0005] 本发明的有益效果:本发明在定位过程中是直接测量得到的距离(1跳节点间的距离)或通过测量值计算(2跳节点间的距离)得到的,与估计距离相比有更高的精度,因此节点的定位精度就更高。此外,在计算节点的相对坐标时,除了初始点及其1跳节点利用古典多维尺度计算方法外,其余节点的相对坐标都是用极大似然估计法计算得到的,计算量要小。\n附图说明\n[0006] 图1是本发明基于全局式优化策略的无线传感器网络节点定位算法流程;\n[0007] 图2是本发明无线传感器网络中2跳节点间的距离;\n具体实施方式\n[0008] 下面结合附图对基于全局式优化策略的无线传感器网络的节点定位方法进行详细说明。\n[0009] 在图1中给出了算法的流程。在图2中给出了节点间关系。图2中A、B、C表示无线传感器网络中3个节点,节点A与节点B之间可以直接通讯,节点B与节点C之间可以直接通讯,节点A与节点C之间无法直接通讯但可以经节点B转发一次实现相互通讯。节点A与节点B,节点B与节点C互为1跳节点;节点A与节点C互为2跳节点。n跳节点则指该节点至少经过(n-1)个不同节点的转发才可与另一节点实现相互通讯,这两个节点互为n跳节点。\n[0010] 基于全局式优化策略的无线传感器网络节点定位方法,其算法步骤包括:\n[0011] 步骤S1:通过测量得到无线传感器网络1跳节点间的距离和相对角度;\n[0012] 无线传感器网络节点间距离的测量可以采用TOA、TDOA或RSSI等测量方法;而无线传感器网络1跳节点间的相对角度的测量主要可以通过接收阵列或多个接收机确定发射节点信号的到达方向来计算相对角度。\n[0013] 步骤S2:利用1跳节点间的距离和相对角度计算传感器网络内2跳节点间的距离;\n[0014] 如附图2所示,节点A和节点C都是节点B的1跳节点,节点A和节点C互为2跳节点,因此通过1跳节点间的距离和相对角度,利用余弦定理可以计算出2跳节点间的距离。节点B接收到的节点A发射信号的到达角度为α,节点B接收到的节点C发射信号的到达的角度为β,∠ABC表示为γ,则有:\n[0015] \n[0016] 由于1跳节点间距离可测,所以可设节点A和节点B间的距离为d1,节点B和节点C间的距离为d2,由余弦定理可计算出2跳节点A和节点C间的距离d,如下式所示:\n[0017] \n[0018] 根据上述公式,无线传感器网络内的所有2跳节点间的距离都可以计算。进而利用所有1跳节点间和2跳节点间的这些距离信息可以计算各节点的相对坐标。\n[0019] 步骤S3:节点间通过通讯选取1跳节点最多的节点作为初始点;\n[0020] 随机选择一个节点X,节点X向其1跳节点传播节点数目信息和地址信息并将自身的置位寄存器由0置位为1,节点数目信息包括节点X的1跳节点数目和节点标号X,地址信息包括发送信息的节点X;节点X的1跳节点接收到信息后,查看自身的置位寄存器。\n[0021] 若置位寄存器为0,向节点X传播“receive”信号,并保留接收到的信息,如果刚接收到信息的节点的1跳节点数目大于收到的节点数目信息中的1跳节点数目,则用自身的1跳节点数目替换节点数目信息中的1跳节点数目,并用自身的节点标号替换节点数目信息中的节点标号;如果自身的1跳节点数目不大于收到的节点数目信息中的1跳节点数目,则节点数目信息不变;再在地址信息中加入自身节点标号,然后将自身的置位寄存器由\n0置位为1,并向周围传播节点数目信息和地址信息;\n[0022] 若置位寄存器已经为1,则删除收到的信息。\n[0023] 这样从节点X开始,节点数目信息和地址信息逐渐向外传播并进行更新。当一个节点在传播信息后未收到“receive”信号,说明它的1跳节点都已接受到了节点数目信息和地址信息。未收到“receive”信号的节点按照地址信息中记录的节点标号将节点数目信息传送回X节点。X节点接收到一个返回的节点数目信息后,设定一段延迟时间,在这段时间中如果接收到其他的返回节点数目信息,则重新计时延迟时间;如果没有接收到其他的返回节点数目信息,X节点则停止接收。X节点比较接收到的节点数目信息中的1跳节点数目,选取1跳节点数目最大的节点标号,并向1跳节点数目最大的节点发送“初始点”信号,将1跳节点数目最大的节点作为初始点。\n[0024] 步骤S4:利用古典多维尺度测量、极大似然估计和全局优化策略对无线传感器网络中所有节点位置进行定位。\n[0025] 步骤S41:利用古典多维尺度测量方法(MDS方法)计算初始点及其1跳节点形成的子网络中节点的相对坐标并建立相对坐标系,并把这些节点称为已定位节点,其余未计算出自身相对坐标的节点称为未定位节点;\n[0026] 在一个r(r=2或3)维空间中,假设任意两个节点i和节点j的距离都已知,则(2)\n距离矩阵D是一个主对角线上元素都为0,其它元素都不为0的对称矩阵,D 是由距离的平方构成的矩阵为:\n[0027] \n[0028] 其中 表示节点i与节点j间距离的平方。设B=-0.5×JD(2)J,其中J=\n-1\nIn×n-n 1n×n,In×n为单位矩阵,1n×n为全1矩阵。对矩阵B进行奇异值分解,可得B=QAQ′,\n1/2\n则节点的相对坐标X=QA 。在计算过程中,矩阵B的奇异值可能存在负值或0,此时选取矩阵B的最大的r个奇异值及对应的奇异向量计算相对坐标\n[0029] \n[0030] 当距离矩阵D没有误差或误差很小时,Xr基本反映了节点在网络中的相对位置。\n[0031] 步骤S42:已定位的节点向周围未定位的节点广播自身的坐标,最远传到已定位节点的2跳节点为止;\n[0032] 步骤S43:初始点的n跳(n>1)节点根据接收到的已定位的(n-1)跳和(n-2)跳节点的坐标,利用极大似然估计法计算初始点的n跳节点自身的相对坐标,当(n-2)为0时,表示初始点本身,并称这些刚计算出自身相对坐标的节点为已定位节点,其余未计算出自身相对坐标的节点称为未定位节点;\n[0033] 设在三维环境中,未知节点坐标为X(x,y,z),收到的k(k≥4)个坐标分别为(x1,y1,z1),(x2,y2,z2),...,(xk,yk,zk),它们到未知节点的距离分别为d1,d2,...,dk,则有[0034] \n[0035] 从第一个方程开始分别减去最后一个方程,得:\n[0036] \n[0037] 上述线性方程可表示为:AX=b,其中\n[0038] \n[0039] \n[0040] 使用最小均方差估计方法可以得到节点的坐标为:\n[0041] \n[0042] 步骤S44:若无线传感器网络内的全部节点都已完成定位或满足预先设定的递推计算次数停止条件,则转入步骤S45,否则返回步骤S42;\n[0043] 预先设定的递推计算次数停止条件是当递推计算次数达到(与初始节点间跳数最大的节点的跳数-1)次时即满足停止条件。\n[0044] 步骤S45:无线传感器网络内的每个节点基于其1跳节点和2跳节点的相对坐标建立目标函数,采用最速下降法对无线传感器网络中所有节点的相对坐标估计进行优化,当满足误差设定条件时转入步骤S46;\n[0045] 当网络中所有节点都已完成定位或满足预先设定的递推计算次数停止条件时,开始对无线传感器网络中的所有节点的相对坐标进行优化。优化时只利用1跳节点或2跳节点间的距离,整个无线传感器网络的全局优化目标函数f为:\n[0046] \n[0047] 其中节点i和节点j均为无线传感器网络中的节点且互为1跳或2跳节点,dij表示节点间的实测距离(1跳节点间的距离)或根据1跳节点间距离和相对角度计算出的距离(2跳节点间的距离),节点i和节点j间的估计距离pij表示为:\n[0048] \n[0049] 上式中(xi,yi,zi)和(xj,yj,zj)分别为节点i和j的相对估计坐标。\n[0050] 采用最速下降法,将目标函数f对节点i的坐标xi,yi,zi分别求导可得:\n[0051] \n[0052] 则节点i相对坐标的第k+1(k≥0)次优化估计值(xi(k+1),yi(k+1),zi(k+1))可表示为\n[0053] \n[0054] 其中Δ表示修正系数,可取值为0.001。无线传感器网络中所有节点经过第k+1次修正后计算目标函数f(k+1)并判断是否满足式:\n[0055] |f(k)-f(k+1)|≤ε,若满足,则结束优化过程;否则各节点发布其第k+1(k≥0)次优化估计值,继续进行优化;\n[0056] 其中ε为一个小的正实数值,可取值为0.001。\n[0057] 步骤S46:利用装有全球定位系统的参考节点的已知绝对坐标及其通过计算获得的相对坐标求取相对坐标系到绝对坐标系的变换矩阵;\n[0058] 设T=[T1,T2,T3,…,Tn]3×n表示n个节点在绝对坐标系下的绝对坐标,R=[R1,R2,R3,…,Rn]3×n表示这n个节点对应的在相对坐标系下的相对坐标。若已知参考节点1,\n2,3,4的绝对坐标和相对坐标,则根据线性变换存在Q3×3使得\n[0059] [T1-T1,T2-T1,T3-T1,T4-T1]=Q[R1-R1,R2-R1,R3-R1,R4-R1]\n[0060] 由上式可以求出相对坐标系到绝对坐标系的变换矩阵Q:\n[0061] Q=[T2-T1,T3-T1,T4-T1]/[R2-R1,R3-R1,R4-R1]\n[0062] 步骤S47:利用变换矩阵将无线传感器网络节点的相对坐标转换为绝对坐标。\n[0063] 节点i的绝对坐标可依据下式获得:\n[0064] Ti=Q[Ri-R1]+T1\n[0065] 其中Ti为节点i的绝对坐标,Ri为节点i的相对坐标,T1为已知参考节点1的绝对坐标,R1为参考节点1的相对坐标,Q为相对坐标系到绝对坐标系的变换矩阵。\n[0066] 以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。
法律信息
- 2011-11-09
- 2010-08-11
实质审查的生效
IPC(主分类): G01S 5/02
专利申请号: 200810224999.2
申请日: 2008.10.29
- 2010-06-09
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有引用任何外部专利数据! |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |