著录项信息
专利名称 | 行程时间的确定方法和装置 |
申请号 | CN201210545174.7 | 申请日期 | 2012-12-14 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2013-04-24 | 公开/公告号 | CN103065469A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G08G1/01 | IPC分类号 | G;0;8;G;1;/;0;1查看分类表>
|
申请人 | 中国航天系统工程有限公司 | 申请人地址 | 北京市丰台区南四环西路188号总部基地17区5号楼
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 中国航天系统工程有限公司 | 当前权利人 | 中国航天系统工程有限公司 |
发明人 | 田启华;雷利军;王法岩;景泽涛;王振华;于渊;聂炜;戴德智;荆长林;董高成;王东亮;翟羽佳;单雅文;杨松 |
代理机构 | 北京方安思达知识产权代理有限公司 | 代理人 | 王宇杨 |
摘要
本发明提供一种行程时间的确定方法和装置,该方法包括:获取当前路段上固定检测装置检测到的车辆行驶信息;将获取到的车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,其中,第一数据库中存储有各个路段在不同时间段的历史车辆行驶信息;将获取到的第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,其中,第二数据库中存储有浮动车在各个路段不同时间段的历史行驶信息;根据第二匹配信息确定当前路段的行程时间。本发明有效地解决了现有技术单一地利用固定检测器采集的交通数据可能导致行程时间预测不准确的问题,提高了道路行程时间预测的准确性。
1.一种行程时间的确定方法,其特征在于,所述方法包括以下步骤:
获取当前路段上固定检测装置检测到的车辆行驶信息;
将获取到的所述车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,其中,所述第一数据库中存储有所述固定检测装置检测得到的各个路段在不同时间段的历史车辆行驶信息;
将获取到的所述第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,其中,所述第二数据库中存储有浮动车在各个路段不同时间段的历史行驶信息;
根据所述第二匹配信息确定所述当前路段的行程时间。
2.如权利要求1所述的方法,其特征在于,所述将获取到的所述车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,包括:
获取所述车辆行驶信息中的速度信息;
在所述第一数据库中,查找到所述当前路段与所述速度信息相匹配的第一时间段;
在查找到的与所述速度信息相匹配的第一时间段中,选择与当前时间参数和/或天气参数相匹配的第二时间段;
将所述第二时间段作为第一匹配信息。
3.如权利要求2所述的方法,其特征在于,所述将获取到的所述第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,包括:
在所述第二数据库中获取所述第二时间段的下一时间段的浮动车的行驶信息;
在获取到的所述第二时间段的下一时间段的浮动车的行驶信息中,筛选出包含有所述当前路段的行驶信息;
将筛选出的包含有所述当前路段的行驶信息作为所述第二匹配信息。
4.如权利要求3所述的方法,其特征在于,所述根据所述第二匹配信息确定所述当前路段的行程时间,包括:
获取所述第二匹配信息中浮动车行驶路段的长度;
根据获取的所述浮动车行驶路段的长度与所述当前路段的长度比例关系,确定当前路段的行程时间。
5.如权利要求4所述的方法,其特征在于,在根据获取的所述浮动车行驶路段的长度与所述当前路段的长度比例关系,确定当前路段的行程时间时,还包括:
判断当前路段是否存在交叉口;
在判定当前路段存在交叉口时,确定交叉口影响因子,根据确定的交叉口影响因子、获取的所述浮动车行驶路段的长度与所述当前路段的长度比例关系,确定当前路段的行程时间。
6.一种行程时间的确定装置,其特征在于,包括:
获取单元,用于获取当前路段上固定检测装置检测到的车辆行驶信息;
第一匹配单元,用于将获取到的所述车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,其中,所述第一数据库中存储有所述固定检测装置检测得到的各个路段在不同时间段的历史车辆行驶信息;
第二匹配单元,用于将获取到的所述第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,其中,所述第二数据库中存储有浮动车在各个路段不同时间段的历史行驶信息;
时间确定单元,用于根据所述第二匹配信息确定所述当前路段的行程时间。
7.如权利要求6所述的装置,其特征在于,所述第一匹配单元包括:
第一获取模块,用于获取所述车辆行驶信息中的速度信息;
查找模块,用于在所述第一数据库中,查找到所述当前路段与所述速度信息相匹配的第一时间段;
选择模块,用于在查找到的与所述速度信息相匹配的第一时间段中,选择与当前时间参数和/或天气参数相匹配的第二时间段,将所述第二时间段作为第一匹配信息。
8.如权利要求7所述的装置,其特征在于,所述第二匹配单元包括:
第二获取模块,用于在所述第二数据库中获取所述第二时间段的下一时间段的浮动车的行驶信息;
筛选模块,用于在获取到的所述第二时间段的下一时间段的浮动车的行驶信息中,筛选出包含有所述当前路段的行驶信息,将筛选出的包含有所述当前路段的行驶信息作为所述第二匹配信息。
9.如权利要求8所述的装置,其特征在于,所述时间确定单元包括:
第三获取模块,用于获取所述第二匹配信息中浮动车行驶路段的长度;
确定模块,用于根据获取的所述浮动车行驶路段的长度与所述当前路段的长度比例关系,确定当前路段的行程时间。
10.如权利要求9所述的装置,其特征在于,所述确定模块包括:
判断子模块,用于判断当前路段是否存在交叉口;
第一确定子模块,用于在所述判断子模块判定当前路段存在交叉口时,确定交叉口影响因子;
第二确定子模块,用于根据确定的交叉口影响因子、获取的所述浮动车行驶路段的长度与所述当前路段的长度比例关系,确定当前路段的行程时间。
行程时间的确定方法和装置\n技术领域\n[0001] 本发明涉及智能交通领域,特别是涉及一种行程时间的确定方法和装置。\n背景技术\n[0002] 目前,交通拥堵已经成为阻碍城市交通发展的关键因素,同时,交通拥堵问题也制约了经济的发展,加剧了环境的污染程度,影响人们的生活质量。交通拥堵问题发生,除了与机动车数量的急剧增长、人们对出行需求的增加等因素有关之外,还有很大的原因在于人们对城市路网使用不合理,缺乏相应的出行诱导信息。合理的路网使用,应该是机动车出行被均匀的分配到路网道路上,从而使路网使用效率达到最高。在现有的交通路况中,大部分路网中道路的使用很不均衡,部分道路使用率过高,造成严重拥堵,使得出行延误增加;\n同时,对于使用率不高的其它道路,造成资源的浪费。准确的出行诱导信息可以提高人们的出行效率,使城市路网更合理的运行。其中,诱导信息的核心内容是路网路段的行程时间。\n[0003] 当前行程时间的预测方法主要有基于时间序列的预测方法、RBF(RadialBasis Function,径向基函数)神经网络法、基于小波的预测方法等。其中基于时间序列的预测方法主要是通过对路段行程时间的历史数据进行平滑处理,根据历史的发展趋势对下个时间段的路段行程时间进行预测。RBF神经网络法主要是利用大量的样本数据对网络进行训练,从而得到路段行程时间的演变规律,在应用时将实时数据作为输入层,利用已得的演变规律对下一时段的行程时间进行预测。基于小波的预测方法,主要是利用了小波的信号分解重构特性,基本流程是,首先将历史信息分解为几层,每一层均表现出历史信息的不同特点,然后在分解信息的基础上对行程时间进行预测,最后将预测信息进行小波重构,从而得到路段的行程时间。\n[0004] 现有的路段行程时间预测方法大部分是单一的通过路侧固定检测器采集交通数据或者浮动车数据,来获取当前路段的历史行程时间。具体地,固定检测器采集的交通数据主要为断面交通数据,利用断面交通数据来对一个连续路段的行程时间进行预测,这种采集断面交通数据存在诸多的不确定因素,导致行程时间预测不准确;利用浮动车数据的方式需构建较复杂的模型,过程复杂。\n[0005] 针对相关技术中单一地利用固定检测器采集的交通数据,可能导致行程时间预测不准确的问题,目前尚未提出有效的解决方案。\n发明内容\n[0006] 本发明提供一种行程时间的确定方法和装置,用以解决现有技术单一地利用固定检测器采集的交通数据,可能导致行程时间预测不准确的问题。\n[0007] 为解决上述技术问题,一方面,本发明提供一种行程时间的确定方法,该方法包括:获取当前路段上固定检测装置检测到的车辆行驶信息;将获取到的车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,其中,第一数据库中存储有各个路段在不同时间段的历史车辆行驶信息;将获取到的第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,其中,第二数据库中存储有浮动车在各个路段不同时间段的历史行驶信息;根据第二匹配信息确定当前路段的行程时间。\n[0008] 优选地,将获取到的车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,包括:获取车辆行驶信息中的速度信息;在第一数据库中,查找到当前路段与速度信息相匹配的第一时间段;在查找到的与速度信息相匹配的第一时间段中,选择与当前时间参数和/或天气参数相匹配的第二时间段;将第二时间段作为第一匹配信息。\n[0009] 优选地,将获取到的第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,包括:在第二数据库中获取第二时间段的下一时间段的浮动车的行驶信息;在获取到的第二时间段的下一时间段的浮动车的行驶信息中,筛选出包含有当前路段的行驶信息;将筛选出的包含有当前路段的行驶信息作为第二匹配信息。\n[0010] 优选地,根据第二匹配信息确定当前路段的行程时间,包括:获取第二匹配信息中浮动车行驶路段的长度;根据获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。\n[0011] 优选地,在根据获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间时,还包括:判断当前路段是否存在交叉口;在判定当前路段存在交叉口时,确定交叉口影响因子,根据确定的交叉口影响因子、获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。\n[0012] 另一方面,本发明还提供一种行程时间的确定装置,该装置包括:获取单元,用于获取当前路段上固定检测装置检测到的车辆行驶信息;第一匹配单元,用于将获取到的车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,其中,第一数据库中存储有各个路段在不同时间段的历史车辆行驶信息;第二匹配单元,用于将获取到的第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,其中,第二数据库中存储有浮动车在各个路段不同时间段的历史行驶信息;时间确定单元,用于根据第二匹配信息确定当前路段的行程时间。\n[0013] 优选地,第一匹配单元包括:第一获取模块,用于获取车辆行驶信息中的速度信息;查找模块,用于在第一数据库中,查找到当前路段与速度信息相匹配的第一时间段;选择模块,用于在查找到的与速度信息相匹配的第一时间段中,选择与当前时间参数和/或天气参数相匹配的第二时间段,将第二时间段作为第一匹配信息。\n[0014] 优选地,第二匹配单元包括:第二获取模块,用于在第二数据库中获取第二时间段的下一时间段的浮动车的行驶信息;筛选模块,用于在获取到的第二时间段的下一时间段的浮动车的行驶信息中,筛选出包含有当前路段的行驶信息,将筛选出的包含有当前路段的行驶信息作为第二匹配信息。\n[0015] 优选地,时间确定单元包括:第三获取模块,用于获取第二匹配信息中浮动车行驶路段的长度;确定模块,用于根据获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。\n[0016] 优选地,确定模块包括:判断子模块,用于判断当前路段是否存在交叉口;第一确定子模块,用于在判断子模块判定当前路段存在交叉口时,确定交叉口影响因子;第二确定子模块,用于根据确定的交叉口影响因子、获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。\n[0017] 本发明有益效果如下:\n[0018] 在本发明中,将固定检测装置检测到的交通数据与浮动车数据进行结合使用,经过综合分析,确定当前路段的行程时间,这种确定行程时间的方式有效地解决了现有技术单一地利用固定检测器采集的交通数据可能导致行程时间预测不准确的问题,提高了道路行程时间预测的准确性。\n附图说明\n[0019] 图1是本发明实施例中行程时间的确定方法的一种优选的流程图;\n[0020] 图2是本发明实施例中行程时间的确定方法中选择的浮动车路段的示意图;\n[0021] 图3是本发明实施例中行程时间的确定装置的一种优选的结构框图;\n[0022] 图4是本发明实施例中行程时间的确定装置的另一种优选的结构框图;\n[0023] 图5是本发明实施例中行程时间的确定装置的又一种优选的结构框图;\n[0024] 图6是本发明实施例中行程时间的确定装置的又一种优选的结构框图。\n具体实施方式\n[0025] 为了解决现有技术中单一地利用固定检测器采集的交通数据可能导致行程时间预测不准确的问题,本发明提供了一种行程时间的确定方法和装置,下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。\n[0026] 实施例1\n[0027] 本发明优选的实施方式提供了一种行程时间的确定方法,图1示出该方法的一种优选的流程图,如图1所示,该方法包括如下步骤:\n[0028] S102,获取当前路段上固定检测装置检测到的车辆行驶信息;\n[0029] 优选地,固定检测装置包括检测摄像头、速度检测仪等交通检测设备,通过固定检测装置可以获取的车辆行驶信息包括:速度、占有率、交通流量等参数,优选地,通过获取车辆行驶信息中的速度参数,来进行对车辆行程时间的预测,优选地,当前路段内可能存在多个固定检测装置,每个固定检测装置负责检测各自范围内的车辆行驶速度参数,该参数可作为行驶时间预测的基准数据。\n[0030] S104,将获取到的车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,其中,第一数据库中存储有各个路段在不同时间段的历史车辆行驶信息;\n[0031] 具体来说,将固定检测装置检测到的速度参数与第一数据库中的历史车辆信息进行匹配,例如,当前路段存在三个固定监测装置,其检测的速度参数分别为60KM/H、55KM/H、\n65KM/H,则在第一数据库中查找到当前路段的历史车辆行驶信息,并筛选出三个对应固定检测装置分别为60KM/H、55KM/H、65KM/H的对应的时间段。优选地,筛选条件可以自己定义,可以是与三个固定检测装置检测到的数据相同,也可以是符合预定范围。\n[0032] S106,将获取到的第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,其中,第二数据库中存储有浮动车在各个路段不同时间段的历史行驶信息;\n[0033] 优选地,第二数据库中存储有浮动车的历史行驶信息,在第一数据库确定符合条件的时间段之后,在第二数据库中,获取与该时间段对应的浮动车的历史行驶信息,优选地,获取的信息为确定的时间段的下一时间段对应的浮动车的行驶信息,该行驶信息中包含有速度信息、路程信息、时间信息等。\n[0034] S108,根据第二匹配信息确定当前路段的行程时间。\n[0035] 根据确定的浮动车的行驶信息,进行相应的分析计算,确定当前路段的行程时间。\n[0036] 在上述优选的实施方式中,将固定检测装置检测到的交通数据与浮动车数据进行结合使用,经过综合分析,确定当前路段的行程时间,这种确定行程时间的方式有效地解决了现有技术单一地利用固定检测器采集的交通数据可能导致行程时间预测不准确的问题,提高了道路行程时间预测的准确性。\n[0037] 在本发明的一个优选的实施方式中,还提供了一种获取第一匹配信息的方案,该方案包括如下步骤:获取车辆行驶信息中的速度信息;在第一数据库中,查找到当前路段与速度信息相匹配的第一时间段;在查找到的与速度信息相匹配的第一时间段中,选择与当前时间参数和/或天气参数相匹配的第二时间段;将第二时间段作为第一匹配信息。\n[0038] 在上述优选的实施方式中,将固定检测装置检测到的速度参数作为衡量该路段行驶时间的基准参数后,在第一数据库中筛选出与速度参数匹配的时间段,并通过其他参数信息,如当前天气状况(包含雨、雪、雾、晴等天气条件)、时间参数(如,星期几)进行进一步筛选,缩小选取范围,提高预测的精准度。\n[0039] 在本发明的一个优选的实施方式中,还提供了一种获取第二匹配信息的方案,具体来说,该方案包括如下步骤:在第二数据库中获取第二时间段的下一时间段的浮动车的行驶信息;在获取到的第二时间段的下一时间段的浮动车的行驶信息中,筛选出包含有当前路段的行驶信息;将筛选出的包含有当前路段的行驶信息作为第二匹配信息。上述优选的方案中,将固定检测装置采集到的数据与浮动车数据相结合,进行综合分析,提高行程时间预测的准确性。\n[0040] 此外,本发明优选的实施方式还提供了一种根据第二匹配信息对当前路段的行程时间进行预测的方法,该方法包括如下步骤:获取第二匹配信息中浮动车行驶路段的长度;\n根据获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。优选地,在根据获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间时,判断当前路段是否存在交叉口;在判定当前路段存在交叉口时,确定交叉口影响因子,根据确定的交叉口影响因子、获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。上述优选的实施方式中,根据路段车辆行驶速度、路段长度、以及路段中是否存在交叉口等因素,进行综合分析,预测车辆的行程时间,简单且高效。\n[0041] 下面对上述方法进行具体说明,包括如下步骤:\n[0042] 步骤1:获取固定检测装置检测的数据,并与数据库中的历史数据进行匹配,优选的,如果当前预测路段周围各检测器的速度数据与历史数据库中某时段的数据匹配度高于预定阈值(如90%),则可将历史数据库中该时段作为案例时段提取出来。\n[0043] 优选地,可以通过以下方案完成上述选取的过程:\n[0044] 假设共有m个固定检测装置,分别为D(1),D(2)......D(m),当前时段m个检测器对应的检测平均速度为分别V(1),V(2).......V(m),对应的历史平均速度数据为V(1)′,V(2)′.......V(m)′。定义εi为当前一个固定检测装置平均速度V(i)与历史平均速度V(i)′的绝对差:\n[0045] εi=|V(i)-V(i)′|\n[0046] 定义单个检测器的匹配阈值不能超过θ(1),所有检测器的绝对差的平均值不能超过θ(2),即,\n[0047] \n[0048] 将满足上述两个公式的历史时段提取出来。\n[0049] 步骤2:进行天气数据匹配,优选地,天气数据包含雨、雪、雾、晴四种。通过与历史天气数据库匹配,从相似案例时段中近一步提取出与当前预测路段天气环境相似的时段案例。\n[0050] 步骤3:进行时间匹配,优选地,时间匹配主要是根据当前预测路段的时间是一周当中的哪一个工作日,与历史数据库匹配,在步骤2的基础上近一步缩小相似时段案例范围。\n[0051] 步骤4:得到最终的时段案例库。\n[0052] 步骤5:在浮动车信息数据库中,提取上述时段案例库中下一时段的浮动车数据信息。\n[0053] 步骤6:对浮动车数据进行筛选,其中,在下一时段的浮动车数据信息中,将包含所需预测路段的保留,将不包含预测路段的删除。\n[0054] 优选地,通过以下方案完成对浮动车数据的筛选:\n[0055] a.根据建立的时段数据库,提取出历史数据库中与当前时段对应的下一时段的浮动车数据。浮动车时段范围根据所选预测路段的长度进行匹配,以浮动车路段包含预测路段为基本原则。\n[0056] b.对满足上述条件的浮动车数据进行筛选,利用最邻近算法找出包含预测路段的最小的浮动车数据,具体来说,计算同一方向满足条件的浮动车初始端点与路段初始端点的距离L(S)以及浮动车终点与路段终点的距离L(D),在满足条件的所有浮动车数据中,选择min(L(S)+L(D))的浮动车数据,作为预测数据。\n[0057] 步骤7,在最终确定的范围内进行分析,优选地,可以根据浮动车数据信息中浮动车路段与预测路段的匹配度,以及预测路段内是否包含交叉口,以及预测路段内是否包含历史浮动车数据进行分析,具体可分为四种情况:\n[0058] 第1种,预测路段内无交叉口,浮动车数据信息中浮动车路段与预测路段重合,这种情况是最好的情况,可直接将浮动车路段的行驶时间作为预测的路段行驶时间。\n[0059] 第2种,预测路段内无交叉口,历史浮动车路段包含预测路段,预测路段内无历史浮动车数据。这种情况需要计算预测路段与浮动车路段的长度比例,根据比例关系,确定预测路段的行驶时间。\n[0060] 第3种,预测路段内无交叉口,历史浮动车路段包含预测路段,预测路段内有历史浮动车数据。这种情况,首先,根据历史浮动车速度数据求出预测路段的第一行驶时间,其次,根据第二种情况求出预测路段作为第二行驶时间,最后将两种预测时间加权平均得到预测路段行程时间。\n[0061] 第4种,预测路段内有交叉口,这种情况需要考虑交叉口延误对路段行程时间的影响,通过交叉口影响因子预测路段行驶时间。\n[0062] 优选地,本发明的实施例还提供了一种交叉口影响因子计算,假设交叉口的影响因子为β,路段车辆运行速度为匀速行驶。选包含预测路段的两条浮动车路段数据L(CD)、L(EF),具体见图2:\n[0063] 无交叉口情况下,根据浮动车数据得路段CD、EF的行程时间分别为T(VD)、T(EF),行程时间与路段长度成正比,则:\n[0064] \n[0065] 有交叉口情况下,路段EF与路段CD之间包含交叉口,根据浮动车数据得到路段CD、EF的行程时间为T′(CD)、T′(EF),交叉口的影响因子为β。则:\n[0066] \n[0067] 则,\n[0068] 计算预测路段AB的行程时间:\n[0069] 判断路段AB内是否存在交叉口,如果是,则执行下述步骤a,如果不是执行下述步骤b:\n[0070] 步骤a:路段AB内存在交叉口的情况下,根据上述的计算的交叉口影响因子β的公式,预测路段AB的行程时间T′(AB)为:\n[0071] \n[0072] 则,\n[0073] 步骤9:路段AB内不存在交叉口的情况下,预测路段AB的行程时间T′(AB)为:\n[0074] \n[0075] 实施例2\n[0076] 基于上述实施例1中提供的行程时间的确定方法,本优选的实施例提供了一种行程时间的确定装置,如图3所示,该装置包括:\n[0077] 获取单元302,用于获取当前路段上固定检测装置检测到的车辆行驶信息;优选地,固定检测装置包括检测摄像头、速度检测仪等交通检测设备,通过固定检测装置可以获取的车辆行驶信息包括:速度、占有率、交通流量等参数,优选地,通过获取车辆行驶信息中的速度参数,来进行对车辆行程时间的预测,优选地,当前路段内可能存在多个固定检测装置,每个固定检测装置负责检测各自范围内的车辆行驶速度参数,该参数可作为行驶时间预测的基准数据。\n[0078] 第一匹配单元304,用于将获取到的车辆行驶信息与第一数据库中的信息进行匹配,以获取对应的第一匹配信息,其中,第一数据库中存储有各个路段在不同时间段的历史车辆行驶信息;具体来说,将固定检测装置检测到的速度参数与第一数据库中的历史车辆信息进行匹配,例如,当前路段存在三个固定监测装置,其检测的速度参数分别为60KM/H、\n55KM/H、65KM/H,则在第一数据库中查找到当前路段的历史车辆行驶信息,并筛选出三个对应固定检测装置分别为60KM/H、55KM/H、65KM/H的对应的时间段。优选地,筛选条件可以自己定义,可以是与三个固定检测装置检测到的数据相同,也可以是符合预定范围。\n[0079] 第二匹配单元306,用于将获取到的第一匹配信息与第二数据库中的信息进行匹配,以获取对应的第二匹配信息,其中,第二数据库中存储有浮动车在各个路段不同时间段的历史行驶信息;优选地,第二数据库中存储有浮动车的历史行驶信息,在第一数据库确定符合条件的时间段之后,在第二数据库中,获取与该时间段对应的浮动车的历史行驶信息,优选地,获取的信息为确定的时间段的下一时间段对应的浮动车的行驶信息,该行驶信息中包含有速度信息、路程信息、时间信息等。\n[0080] 时间确定单元308,用于根据第二匹配信息确定当前路段的行程时间。根据确定的浮动车的行驶信息,进行相应的分析计算,确定当前路段的行程时间。\n[0081] 在上述优选的实施方式中,将固定检测装置检测到的交通数据与浮动车数据进行结合使用,经过综合分析,确定当前路段的行程时间,这种确定行程时间的方式有效地解决了现有技术单一地利用固定检测器采集的交通数据可能导致行程时间预测不准确的问题,提高了道路行程时间预测的准确性。\n[0082] 在本发明的一个优选的实施方式中,还提供了一种获取第一匹配信息的方案,具体来说,如图4所示,第一匹配单元304包括:第一获取模块402,用于获取车辆行驶信息中的速度信息;查找模块404,用于在第一数据库中,查找到当前路段与速度信息相匹配的第一时间段;选择模块406,用于在查找到的与速度信息相匹配的第一时间段中,选择与当前时间参数和/或天气参数相匹配的第二时间段,将第二时间段作为第一匹配信息。\n[0083] 在上述优选的实施方式中,将固定检测装置检测到的速度参数作为衡量该路段行驶时间的基准参数后,在第一数据库中筛选出与速度参数匹配的时间段,并通过其他参数信息,如当前天气状况(包含雨、雪、雾、晴等天气条件)、时间参数(如,星期几)进行进一步筛选,缩小选取范围,提高预测的精准度。\n[0084] 在本发明的一个优选的实施方式中,还提供了一种获取第二匹配信息的方案,具体来说,如图5所示,第二匹配单元306包括:第二获取模块502,用于在第二数据库中获取第二时间段的下一时间段的浮动车的行驶信息;筛选模块504,用于在获取到的第二时间段的下一时间段的浮动车的行驶信息中,筛选出包含有当前路段的行驶信息,将筛选出的包含有当前路段的行驶信息作为第二匹配信息。上述优选的方案中,将固定检测装置采集到的数据与浮动车数据相结合,进行综合分析,提高行程时间预测的准确性。\n[0085] 此外,本发明优选的实施方式还提供了一种根据第二匹配信息对当前路段的行程时间进行预测的方案,具体地,如图6所示,时间确定单元308包括:第三获取模块602,用于获取第二匹配信息中浮动车行驶路段的长度;确定模块604,用于根据获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。优选地,确定模块\n604包括:判断子模块,用于判断当前路段是否存在交叉口;第一确定子模块,用于在判断子模块判定当前路段存在交叉口时,确定交叉口影响因子;第二确定子模块,用于根据确定的交叉口影响因子、获取的浮动车行驶路段的长度与当前路段的长度比例关系,确定当前路段的行程时间。上述优选的实施方式中,根据路段车辆行驶速度、路段长度、以及路段中是否存在交叉口等因素,进行综合分析,预测车辆的行程时间,简单且高效。\n[0086] 从以上描述中可以看出,本发明优选的实施例将固定检测装置检测到的交通数据与浮动车数据进行结合使用,经过综合分析,确定当前路段的行程时间,这种确定行程时间的方式有效地解决了现有技术单一地利用固定检测器采集的交通数据可能导致行程时间预测不准确的问题,提高了道路行程时间预测的准确性。\n[0087] 尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。
法律信息
- 2015-02-04
- 2013-05-29
实质审查的生效
IPC(主分类): G08G 1/01
专利申请号: 201210545174.7
申请日: 2012.12.14
- 2013-04-24
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2012-08-22
|
2011-02-21
| | |
2
| |
2007-10-31
|
2007-02-08
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |