著录项信息
专利名称 | 用于实时干低氮氧化物(DLN)和扩散燃烧监视的方法和系统 |
申请号 | CN201380012462.9 | 申请日期 | 2013-03-01 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2015-03-04 | 公开/公告号 | CN104395848A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G05B23/02 | IPC分类号 | G;0;5;B;2;3;/;0;2查看分类表>
|
申请人 | 诺沃皮尼奥内股份有限公司 | 申请人地址 | 意大利佛罗伦萨
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 诺沃皮尼奥内股份有限公司 | 当前权利人 | 诺沃皮尼奥内股份有限公司 |
发明人 | N.吉安尼尼;A.A.哈利迪;A.萨拉瓦纳普里彦;D.比亚努奇;A.普莫;A.贝蒂;R.克罗恰尼;O.N.阿舒尔 |
代理机构 | 中国专利代理(香港)有限公司 | 代理人 | 叶晓勇;姜甜 |
摘要
一种用于监视并诊断燃气涡轮的扩散或干低NOx燃烧系统中的异常的系统和方法,所述方法包括存储特定针对于燃气涡轮排气的温度差距的多个规则集。所述方法进一步包括使用排气流的旋涡角、所述燃气涡轮的多个火焰检测器的健康、以及所述燃气涡轮从第一操作模式转换到第二较低NOx操作模式中的至少一者确定所述燃气涡轮的性能上的异常,并且向所述燃气涡轮的操作者推荐一组校正性动作来校正所述异常。
1.一种用于监视并诊断燃气涡轮的操作中的燃烧异常的计算机实施方法,所述方法是使用耦合到用户接口的计算机装置和存储器装置来实施的,所述方法包括:
在所述存储器装置中存储多个规则集,所述规则集与所述燃气涡轮的所述操作有关,所述规则集包括表达为实时数据输出相对于实时数据输入的关系表达式的至少一个规则,所述关系表达式特定针对于所述燃气涡轮的排气流的温度差距、排气流的旋涡角、所述燃气涡轮的多个次级火焰检测器的健康、以及所述燃气涡轮从第一操作模式转换到第二较低NOX操作模式中的至少一者;
从与所述燃气涡轮相关联的条件监视系统接收实时和历史数据输入,所述数据输入与参数相关,所述参数影响所述燃气涡轮的所述排气流的所述温度差距、所述排气流的所述旋涡角、所述燃气涡轮的所述多个次级火焰检测器的所述健康、以及所述燃气涡轮从所述第一操作模式转换到所述第二较低NOX操作模式中的至少一者;
使用所述所接收的数据确定燃料气体线路压力下降;
将所述所确定的压力下降与预定阈值范围进行比较;以及
如果所述所确定的压力下降满足所述预定阈值范围,则向所述燃气涡轮的操作者推荐在不降低所述燃气涡轮的负荷的情况下使所述燃气涡轮的所述操作模式从所述第一操作模式转换到所述第二较低NOX操作模式。
2.根据权利要求1所述的方法,其中存储多个规则集包括存储燃气涡轮转换规则集,其中所述第一操作模式是扩展稀薄-稀薄EXT-LL模式,且所述第二较低NOX操作模式是预混合模式。
3.根据权利要求1所述的方法,其进一步包括:
接收所述多个次级火焰检测器中的至少一些的模拟信号输出;
统计分析每个模拟信号输出以识别所述信号的噪声分量和所述信号的变化;
基于所述分析来产生所述信号的健康计数量度以定义多个阈值;
将当前模拟信号输出与相应阈值进行比较;以及
输出对以下至少一者的推荐:替换所述多个次级火焰检测器中的一者;调整所述多个次级火焰检测器中的一者;检查所述多个次级火焰检测器中的一者的操作;以及清洁所述多个次级火焰检测器中的一者的透镜。
4.根据权利要求1所述的方法,其进一步包括:
确定燃气涡轮排气流的旋涡角;
使用所述所确定的旋涡角确定故障燃烧器;以及
向操作者输出所述所确定的故障燃烧器。
5.根据权利要求4所述的方法,其中确定旋涡角包括:
从与所述燃气涡轮排气流相关联的一个或多个温度传感器接收多个温度输出;
使用所述所接收的多个温度输出确定所述燃气涡轮排气流的温度差距。
6.根据权利要求5所述的方法,其进一步包括使所述所确定的温度差距与预定容许温度差距相关以确定所述温度差距的源燃烧器的身份。
7.根据权利要求5所述的方法,其中确定所述燃气涡轮排气流的温度差距包括在所述燃气涡轮的排气扩散器处确定所述燃气涡轮排气流的温度差距。
8.根据权利要求5所述的方法,其中确定所述燃气涡轮排气流的温度差距包括作为燃烧模式与负荷的函数确定所述燃气涡轮排气流的温度差距。
9.根据权利要求5所述的方法,其中所述燃气涡轮能够在多种不同燃烧模式下进行操作,所述方法进一步包括针对每种不同燃烧模式确定温度差距阈值。
10.根据权利要求9所述的方法,其进一步包括将温度差距阈值设置为对应于正进入的燃烧模式的值,这在以下至少一者时进行:在过渡到所述正进入的燃烧模式的同时;以及在过渡到所述正进入的燃烧模式之前。
用于实时干低氮氧化物(DLN)和扩散燃烧监视的方法和系统\n技术领域\n[0001] 本描述大体上涉及机械/电气设备操作、监视和诊断,并且更具体地说,涉及用于自动向操作者报告机械的异常行为的系统和方法。\n背景技术\n[0002] 燃烧系统是要在燃气涡轮中监视的重要项目。传统的燃烧监视系统使用不考虑机器操作条件的静态阈值,例如燃烧模式和负荷。因而,它们是低效的并且产生假警报或过迟警报。举例来说,在真正排气温度差距问题的情况下当前要花费好几个小时来定位错误的来源。在火焰检测器那侧,仅监视数字信号或监视模拟输出而没有正确统计方法是有问题的并且会导致假警告。\n[0003] 传统的监视系统具有技术缺陷。不准确是最明显的,如通常报告过多假警报或过迟警报所见,而没有考虑到机器操作条件;因此,不提供故障排除或提供很少信息。\n发明内容\n[0004] 在一个实施例中,一种用于监视并诊断燃气涡轮的操作上的异常的计算机实施方法,所述方法是使用耦合到用户接口的计算机装置和存储器装置来实施的,所述方法包括:\n在所述存储器装置中存储多个规则集,所述规则集与所述燃气涡轮的所述操作相关,所述规则集包括表达为实时数据输出相对于实时数据输入的关系表达式的至少一个规则,所述关系表达式特定针对于所述燃气涡轮的排气流的温度差距、所述排气流的旋涡角、所述燃气涡轮的多个火焰检测器的健康、以及所述燃气涡轮从第一操作模式转换到第二较低NOX操作模式中的至少一者;从与所述燃气涡轮相关联的条件监视系统接收实时和历史数据输入,所述数据输入与参数相关,所述参数影响所述燃气涡轮的所述排气流的所述温度差距、所述排气流的所述旋涡角、所述燃气涡轮的所述多个火焰检测器的所述健康、以及所述燃气涡轮从所述第一操作模式转换到所述第二较低NOX操作模式中的至少一者;使用所述所接收的数据确定燃料气体线路压力下降;将所述所确定的压力下降与预定阈值范围进行比较;以及如果所述所确定的压力下降满足所述预定阈值范围,则向所述燃气涡轮的操作者推荐在不降低所述燃气涡轮的负荷的情况下使所述燃气涡轮的所述操作模式从所述第一模式转换到所述第二模式。\n[0005] 在另一个实施例中,一种用于包括成流体连通的轴流式压缩器和低压涡轮的燃气涡轮的燃气涡轮监视与诊断系统,所述系统包含实时DLN和扩散燃烧规则集,所述规则集包括实时数据输出相对于所述燃气涡轮的排气流的温度差距、所述排气流的旋涡角、所述燃气涡轮的多个火焰检测器的健康、以及所述燃气涡轮从第一操作模式转换到第二较低NOX操作模式中的至少一者的关系表达式。\n[0006] 在又一个实施例中,一个或多个非暂时性计算机可读存储媒体具有体现于其上的计算机可执行指令,其中当由至少一个处理器执行时,所述计算机可执行指令致使所述处理器在所述存储器装置中存储多个规则集,所述规则集与燃气涡轮的输出相关,所述规则集包括表达为实时数据输出相对于实时数据输入的关系表达式的至少一个规则,所述关系表达式特定针对于所述燃气涡轮的排气流的温度差距、所述排气流的旋涡角、所述燃气涡轮的多个火焰检测器的健康、以及所述燃气涡轮从第一操作模式转换到第二较低NOX操作模式中的至少一者;从与所述燃气涡轮相关联的条件监视系统接收实时和历史数据输入,所述数据输入与参数相关,所述参数影响所述燃气涡轮的所述排气流的所述温度差距、所述排气流的所述旋涡角、所述燃气涡轮的所述多个火焰检测器的所述健康、以及所述燃气涡轮从所述第一操作模式转换到所述第二较低NOX操作模式中的至少一者;从与所述燃气涡轮排气流相关联的一个或多个温度传感器接收多个温度输出;以及使用所述所接收的多个温度输出确定所述燃气涡轮排气流的温度差距。\n附图说明\n[0007] 图1到图10展示本说明书中所描述的方法和系统的示范性实施例。\n[0008] 图1是根据本发明的示范性实施例的远程监视与诊断系统的示意性框图。\n[0009] 图2是本地工业工厂监视与诊断系统(例如分布式控制系统(DCS))的网络架构的示范性实施例的框图。\n[0010] 图3是可与图1所示的LMDS一起使用的示范性规则集的框图。\n[0011] 图4是根据本公开的示范性实施例的燃气涡轮引擎的侧视图。\n[0012] 图5是根据本公开的示范性实施例的围绕扩散器大致均匀间隔开的十二个热电偶的布置的示意性表示。\n[0013] 图6是说明燃烧器堵塞与排气温度差距之间的相关性的曲线图。\n[0014] 图7是根据本公开的示范性实施例的可与图4所示的燃气涡轮引擎一起使用的火焰检测器(FD)电路的示意性框图。\n[0015] 图8是火焰检测器电路模拟输出和数字输出的迹线的屏幕截图。\n[0016] 图9是在加载和卸载过程期间燃气涡轮引擎的操作的流程图。\n[0017] 图10是根据本公开的示范性实施例的可与图4所示的燃气涡轮引擎一起使用的燃料系统1000的一部分的示意性管线图。\n[0018] 虽然可能在一些附图中而未在其它附图中展示各种实施例的特定特征,但这只是出于方便起见。任何附图的任何特征可与任何其它附图的任何特征结合来提及和/或主张。\n具体实施方式\n[0019] 以下详细描述以实例方式而非以限制方式说明本发明的实施例。预期本发明广泛适用于在工业、商业和住宅应用中监视设备操作的分析型且有条理的实施例。\n[0020] 燃烧系统是要在燃气涡轮中监视的重要项目。干低NOX(DLN)系统是较复杂的,并且涉及与传统燃气引擎不同的燃烧模式。如本说明书中所使用,NOx是指单氮氧化物,即NO和NO2(一氧化氮和二氧化氮)。实时DLN和扩散燃烧规则集有助于防止不正确的燃烧操作,识别用于故障排除的指导方针,并且报警早期故障迹象,从而给燃气涡轮操作者时间来采取措施和/或安排停工。\n[0021] 实时DLN和扩散燃烧规则集包括以下燃烧规则作为在线监视系统的一部分:\n[0022] 1.作为燃烧模式与负荷的函数的排气温度差距:对于DLN系统,为排气温度差距指定一个常数阈值将导致假警报或过迟警报。存在过渡序列,在过渡序列期间燃烧从一种模式转换到另一种模式的;例如:初级、稀薄-稀薄、次级、预混合或扩展稀薄-稀薄。在每种模式期间,识别差距的恰当阈值,并且当在稀薄-稀薄模式下加载机器时,作为点火温度的函数来指定差距。对于扩散燃烧,将差距与阈值进行比较,所述阈值例如是容许差距的大约\n0.7倍。还定义用以突出排气温度热电偶传感器故障的规则。排气差距阈值被更准确地设置,因为它们是针对每个燃烧模式来设置的并且作为负荷的函数。检验排气差距警报来确保真正问题是原因。实时DLN和扩散燃烧规则集促进并增强故障排除:例如,旋涡角计算器定位错误来源(燃烧器和/或燃料喷嘴)并且减少故障排除时间。对于扩散燃烧燃气涡轮,还提供确定高差距是否是由故障传感器造成的规则,以使得故障排除过程可立即朝向正确根本原因识别进行。\n[0023] 2.实时DLN和扩散燃烧规则集还执行旋涡角计算来将所述差距追溯到来源或故障燃烧器,这将显著减少故障排除时间。当在多罐式燃气涡轮上检测到差距时,不能直接对问题的来源(故障燃烧器)进行判断,因为热电偶不是放置在邻近于燃烧器罐处。规则集从排气扩散器处的差距异常追溯到故障燃烧器。规则引擎中所使用的相关性在出现真正差距的情况下识别故障燃烧器。\n[0024] 3.火焰检测器健康也是重要的,因为火焰检测器随时间的降级以及其它问题可导致多次跳闸,并且产生所有相关联的成本和生产损失。实时DLN和扩散燃烧规则集包括分析火焰检测器的健康并且产生与这个实时分析有关的警告和推荐,这有助于执行火焰检测器系统的良好维修以便避免假火焰丧失警报和跳闸。来自火焰传感器(UV传感器)的原始脉冲信号由控制系统以两种不同方式来处理;作为模拟输出和数字输出。数字信号用来检测火焰,并且在控制面板逻辑中涉及,而不使用模拟信号。现场测试以及若干个测试已经展示火焰检测器信号的高度可变性和低重复性,这是次级模式下的“假”火焰丧失和跳闸的原因,在预混合模式下运行。火焰检测器的健康取决于包括空气湿度、透镜上的污垢积聚和电线连接在内的许多因素。在实时DLN和扩散燃烧规则集中,使用模拟输出来监视次级火焰检测器:使用统计方法来处理每个信号以识别噪声和变化并且产生“健康计数量度”。这种量度用来界定阈值并且指示是否需要改变或调整所述传感器。输出推荐或者是要替换、调整、检查或是清洁检测器的透镜。实时DLN和扩散燃烧规则集的火焰检测器规则监视随时间的降级,并且因此可预测早期故障迹象。输出推荐可将变坏检测器与变脏或有雾检测器区别开。\n[0025] 4.从扩展稀薄-稀薄(EXT-LL)模式转换到预混合模式当前需要使不必要的卸载和过度燃烧。因此,与低排放相关联的任何益处与这种过度燃烧抵触。基于燃料气体线路压力下降计算,实时DLN和扩散燃烧规则集评估在没有卸载的情况下直接转换的可能性,其可减少燃烧并且允许在不减少燃气涡轮负荷的情况下进行转换。DLN转换规则允许操作员理解避免不必要的卸载来节省由过度过程气体燃烧引起的时间、燃料和排放物的可能性。\n[0026] 图1是根据本发明的示范性实施例的远程监视与诊断系统100的示意性框图。在所述示范性实施例中,系统100包括远程监视与诊断中心102。远程监视与诊断中心102由例如所购买的多个设备的OEM等实体操作以及由例如操作实体等单独商业实体操作。在示范性实施例中,OEM和操作实体进入支持安排,借此OEM向操作实体提供与所购买的设备相关的服务。操作实体可在单个场地或多个场地拥有并操作所购买的设备。此外,OEM可与多个操作实体进入支持安排,每个操作实体操作其自己的单个场地或多个场地。多个场地可各自含有相同的单独设备或相同的多组设备,例如设备系列。另外,至少一些设备可对于一个场地为唯一的或对于所有场地为唯一的。\n[0027] 在示范性实施例中,第一场地104包括一个或多个过程分析器106、设备监视系统\n108、设备本地控制中心110和/或监视与警报面板112,其各自被配置成与相应的设备传感器和控制设备介接以实行相应设备的控制和操作。所述一个或多个过程分析器106、设备监视系统108、设备本地控制中心110和/或监视与警报面板112通过网络116以通信方式耦合到智能监视与诊断系统114。智能监视与诊断(IMAD)系统114进一步被配置成与其它现场系统(图1中未示出)和场外系统(例如但不限于远程监视与诊断中心102)通信。在各种实施例中,IMAD 114被配置成使用例如专用网络118、无线链路120和因特网122来与远程监视与诊断中心102通信。\n[0028] 多个其它场地(例如,第二场地124和第n个场地126)中的每一者可大致上类似于第一场地104,但可完全类似于或可不完全类似于第一场地104。\n[0029] 图2是本地工业工厂监视与诊断系统(例如分布式控制系统(DCS)201)的网络架构\n200的示范性实施例的框图。工业工厂可包括多个工厂设备,例如燃气涡轮、离心式压缩机、齿轮箱、发电机、泵、马达、鼓风机和过程监视传感器,其通过互连管路以流动连通的方式耦合并且通过一个或多个远程输入/输出(I/O)模块以及互连电缆和/或无线通信以信号通信的方式与DCS 201耦合。在示范性实施例中,工业工厂包括DCS 201,其包括网络主干203。网络主干203可为由(例如)双绞线电缆、屏蔽同轴电缆或光纤电缆制成的硬连线数据通信路径,或可为至少部分无线的。DCS 201还可包括处理器205,其以通信方式耦合到工厂设备,位于工业工厂场地或位于远程位置,这通过网络主干203实现。应理解,任何数目的机器可操作性地连接到网络主干203。一部分机器可硬连线到网络主干203,并且另一部分机器可经由无线基站207无线地耦合到主干203,所述无线基站207以通信方式耦合到DCS 201。无线基站207可用以扩大DCS 201的有效通信范围,例如与位于远离工业工厂但仍互连到工业工厂内的一个或多个系统的设备或传感器的通信。\n[0030] DCS 201可被配置成接收并显示与多个设备相关联的操作参数,并且产生自动控制信号以及接收手动控制输入以用于控制工业工厂的设备的操作。在示范性实施例中,DCS \n201可包括软件代码片段,其被配置来控制处理器205分析在DCS 201处接收的数据,所述数据允许对工业工厂机器进行在线监视与诊断。可从每个机器(包括燃气涡轮、离心式压缩机、泵和马达)、相关联的过程传感器以及本地环境传感器(例如,包括振动、地震、温度、压力、电流、电压、环境温度和环境湿度传感器)收集数据。所述数据可由本地诊断模块或远程输入/输出模块进行预处理,或可按原始形式传输到DCS 201。\n[0031] 本地监视与诊断系统(LMDS)213可为单独的附加硬件装置,例如个人计算机(PC),其通过网络主干203来与DCS 201以及其它控制系统209和数据源通信。LMDS 213还可在DCS \n201和/或一个或多个其它控制系统209上执行的软件程序片段中体现。因此,LMDS 213可用分布式方式进行操作,使得一部分软件程序片段在若干个处理器上同时执行。因而,LMDS \n213可完全集成到DCS 201和其它控制系统209的操作中。LMDS 213分析由DCS 201、数据源和其它控制系统209接收的数据以使用工业工厂的全局视图确定所述机器和/或采用所述机器的过程的操作健康。\n[0032] 在示范性实施例中,网络架构100包括服务器级计算机202和一个或多个客户端系统203。服务器级计算机202进一步包括数据库服务器206、应用程序服务器208、网络服务器\n210、传真服务器212、目录服务器214和邮件服务器216。服务器206、208、210、212、214和216中的每一者可在服务器级计算机202上执行的软件中体现,或服务器206、208、210、212、214和216的任何组合可单独地或组合地在耦合于局域网(LAN)(未图示)中的单独服务器级计算机上体现。数据存储单元220耦合到服务器级计算机202。另外,工作站222(例如系统管理员的工作站、用户工作站和/或监督员的工作站)耦合到网络主干203。或者,工作站222使用因特网链路226耦合到网络主干203,或通过无线连接(例如通过无线基站207)来连接。\n[0033] 每个工作站222可为具有网络浏览器的个人计算机。虽然通常在工作站处执行的功能被说明为在相应工作站222处执行,但此类功能可在耦合到网络主干203的许多个人计算机中的一者处执行。工作站222被描述为仅与单独示范性功能相关联以有助于理解可由能够接入网络主干203的个人执行的不同类型的功能。\n[0034] 服务器级计算机202被配置成以通信方式耦合到各种个人,包括雇员228,并且耦合到第三方,例如服务提供商230。示范性实施例中的通信被说明为使用因特网来执行,然而,可在其它实施例中利用任何其它广域网(WAN)型通信,即,所述系统和过程不限于使用因特网来实践。\n[0035] 在示范性实施例中,具有工作站232的任何被授权的个人能够访问LMDS213。至少一个客户端系统可包括位于远程位置的管理者工作站234。工作站222可在具有网络浏览器的个人计算机上体现。而且,工作站222被配置成与服务器级计算机202通信。此外,传真服务器212使用电话链路(未图示)与位于远端的客户端系统(包括客户端系统236)通信。传真服务器212被配置成还与其它客户端系统228、230和234通信。\n[0036] 如下文更详细描述的LMDS 213的计算机化建模与分析工具可存储在服务器202中并且可由任何一个客户端系统204处的请求者访问。在一个实施例中,客户端系统204是包括网络浏览器的计算机,使得服务器级计算机202能够由客户端系统204使用因特网来访问。客户端系统204通过许多接口互连到因特网,所述接口包括网络(例如局域网(LAN)或广域网(WAN))、拨入连接、电缆调制解调器和特殊高速ISDN线。客户端系统204可为能够互连到因特网的任何装置,包括基于网络的电话、个人数字助理(PDA)或其它基于网络的可连接设备。数据库服务器206连接到含有关于工业工厂10的信息的数据库240,如下文更详细描述。在一个实施例中,集中式数据库240存储在服务器级计算机202上并且可由一个客户端系统204处的潜在用户通过经由一个客户端系统204登录到服务器级计算机202来访问。在替代性实施例中,数据库240存储在远离服务器级计算机202处,并且可为非集中式的。\n[0037] 其它工业工厂系统可提供服务器级计算机202和/或客户端系统204能够通过通往网络主干203的独立连接来访问的数据。交互式电子技术手动服务器242服务于对与每个机器的配置相关的机器数据的请求。此类数据可包括操作能力,例如泵曲线、马达马力额定值、绝缘等级和帧大小;设计参数,例如维度、转子条或叶轮片的数目;以及机械维修历史,例如对机器的现场更改、调整前和调整后对准测量以及不使机器返回到其原始设计条件的对机器实施的修理。\n[0038] 便携式振动监视器244可直接或通过计算机输入端口(例如工作站222或客户端系统204中所包括的端口)间歇地耦合到LAN。通常,按某一路线收集振动数据,周期性地(例如,每月或其它周期性)从预定的一列机器收集数据。还可结合故障排除、维修和试车活动来收集振动数据。另外,可实时地或准实时地连续收集振动数据。此类数据可为LMDS 213的算法提供新基线。可类似地在路线基础上或在故障排除、维修和试车活动期间收集过程数据。此外,可实时地或准实时地连续收集某些过程数据。某些过程参数可能不会永久地被检测到,并且便携式过程数据收集器245可用以收集可通过工作站222下载到DCS 201以使得其可由LMDS 213访问的过程参数数据。可通过多个在线监视器246将例如过程流体成分分析物和污染物排放分析物等其它过程参数数据提供到DCS 201。\n[0039] 供应到各种机器或由发电机对工业工厂产生的电力可由与每个机器相关联的马达保护继电器248监视。通常,此类继电器248位于远离马达控制中心(MCC)中的受监视设备处或位于对机器供电的开关装置250中。另外,对于保护继电器248,开关装置250还可包括监督控制与数据采集系统(SCADA),其向LMDS 213提供位于工业工厂处(例如,在调车场中)的电力供应或电力递送系统(未图示)设备或远程传输线路断路器和线路参数。\n[0040] 图3是可与LMDS 213(图1所示)一起使用的示范性规则集280的框图。规则集280可为一个或多个自定义规则以及定义所述自定义规则的行为和状态的一系列特性的组合。所述规则和特性可按XML字符串的格式来捆绑和存储,所述XML字符串可在存储为文件时基于\n25字符字母数字密钥来加密。规则集280是包括一个或多个输入282和一个或多个输出284的模块化知识元。输入282可为将数据从LMDS 213中的特定位置引导到规则集280的软件端口。举例来说,来自泵外置振动传感器的输入可被传输到DCS 201中的硬件输入终端。DCS \n201可在那个终端处对信号进行取样以在其上接收所述信号。接着可对信号进行处理并将其存储在DCS 201能够访问和/或与DCS 201成一体式的存储器中的一个位置处。规则集280的第一输入286可被映射到存储器中的所述位置,使得存储器中的所述位置的内容作为输入对于规则集280可用。类似地,输出288可被映射到DCS 201能够访问的存储器中的另一位置或映射到另一存储器,使得存储器中的所述位置含有规则集280的输出288。\n[0041] 在示范性实施例中,规则集280包括与同在工业工厂(例如,天然气回注工厂、液体天然气(LNG)工厂、发电厂、精炼厂和化学处理设施)中操作的设备相关联的特定问题的监视和诊断相关的一个或多个规则。虽然按照与工业工厂一起使用来描述规则集280,但可恰当地构造规则集280来俘获任何知识并且用于在任何领域中确定解决方案。举例来说,规则集280可含有与经济行为、金融活动、天气现象和设计过程有关的知识。规则集280可接着用以在这些领域中确定问题的解决方案。规则集280包括来自一个或多个来源的知识,使得所述知识被传输到应用规则集280的任何系统。以将输出284与输入282相关的规则的形式俘获知识,使得输入282和输出284的规范允许将规则集280应用于LMDS213。规则集280可仅包括特定针对于特定工厂资产的规则,并且可仅针对于与那个特定工厂资产相关联的一个可能问题。举例来说,规则集280可仅包括适用于马达或马达/泵组合的规则。规则集280可仅包括使用振动数据确定马达/泵组合的健康的规则。规则集280还可包括使用一套诊断工具确定马达/泵组合的健康的规则,除了振动分析技术之外,所述诊断工具还可包括(例如)用于马达/泵组合的性能计算工具和/或金融计算工具。\n[0042] 在操作中,在软件开发工具中创建规则集280,所述软件开发工具向用户提示输入\n282与输出284之间的关系。输入282可接收表示(例如)数字信号、模拟信号、波形、经处理信号、手动输入和/或配置参数以及来自其它规则集的输出的数据。规则集280内的规则可包括逻辑规则、数值算法、波形和信号处理技术应用、专家系统和人工智能算法、统计工具和可使输出284与输入282相关的任何其它表达式。输出284可被映射到存储器中的被保留并配置来接收每个输出284的相应位置。LMDS 213和DCS 201可接着使用存储器中的所述位置来完成LMDS 213和DCS 201可被编程来执行的任何监视和/或控制功能。规则集280的规则独立于LMDS 213和DCS 201来进行操作,但可直接地或通过居间装置间接地将输入282供应到规则集280以及将输出284供应到规则集280。\n[0043] 在创建规则集280期间,所述领域中的人类专家通过编程一个或多个规则来使用开发工具公布特定针对于特定资产的领域的知识。通过产生输出284与输入282之间的关系的表达式来创建所述规则。可使用图形方法从操作数库中选择操作数,例如在构建到开发工具中的图形用户接口上使用拖放。可从屏幕显示(未图示)的库部分中选择操作数的图形表示,并且将其拖放到规则创建部分中。以逻辑显示型式布置输入282与操作数之间的关系,并且在合适时基于所选择的特定操作数和特定数个输入282来向用户提示值,例如常数。创建了俘获专家的知识所需要的许多规则。因而,规则集280可基于客户需求和规则集\n280的特定领域中的技术状态来包括一组稳健的诊断和/或监视规则或一组相对较不稳健的诊断和/或监视规则。开发工具提供用于在开发期间测试规则集280的资源来确保输入\n282的各种组合和值在输出284处产生预期输出。\n[0044] 如下文所描述,定义规则集来作为燃烧模式与负荷的函数评估排气温度差距,评估用以将排气温度差距追溯到来源或故障燃烧器的旋涡角计算,评估火焰检测器的健康,并且产生警告和推荐来避免假火焰丧失警报和跳闸、当前需要从扩展稀薄-稀薄(EXT-LL)模式转换到预混合模式的燃气涡轮操作的不必要卸载和过度燃烧。\n[0045] 图4是根据本公开的示范性实施例的燃气涡轮引擎400的侧视图。在所述示范性实施例中,燃气涡轮引擎400包括定位成与下游低压力或负荷涡轮404成流体连通的多个偏向燃烧室402,以及定位在低压力涡轮404下游的扩散器406。扩散器406包括位于排放气体离开低压涡轮404的流道中的围绕扩散器406的内部定位的多个热电偶408。在示范性实施例中,热电偶408的数目为十三,其围绕扩散器406沿圆周均匀地间隔开。在各种实施例中,使用其它数目的热电偶408,其可根据方便来在扩散器406中间隔开。\n[0046] 在示范性实施例中,热电偶408以通信方式耦合到高差距检测器410,所述高差距检测器被配置来接收温度信号并且向所述信号应用一个或多个排气差距检测规则集。偏向燃烧室402围绕燃气涡轮引擎400沿圆周间隔开。离开每个燃烧室402的排放气体基于每个燃烧室402内的燃烧条件在温度上有所不同。每个燃烧室402的排放气体往往会与离开所述多个燃烧室402中的其它燃烧室的排放气体仅稍微混合。取决于燃气涡轮引擎操作条件,包括但不限于负荷、气流和燃烧室402操作条件,每个热电偶408可与可辨别的一个或多个燃烧室402紧密相关联。通过检测由热电偶408感测到的扩散器406中的温度差距上的异常,这种紧密关联准许检测一个燃烧室402中的燃烧器所具有的问题。\n[0047] 与高差距检测器410相关联的排气差距规则集估计旋涡角,如本说明书中所使用,旋涡角是指在变化的负荷下的测得代表性排放气体温度与燃烧室402源位置之间的角度。\n在示范性实施例中,排气差距规则集是具有以下输入的转换函数:\n[0048] 排气温度热电偶读数(TTXD_1、...、TTXD_13*)\n[0049] 排气温度差距(TTXSP1*)\n[0050] 高压涡轮速度-百分比(TNH*)\n[0051] 低压涡轮速度-百分比(TNL*)\n[0052] 绝对压力压缩机排放(PCD_abs*)\n[0053] 环境压力(AFPAP*)\n[0054] 排气差距规则集被配置来输出旋涡角和冷/热点估计。使用所述输出来识别扩散器406周围的温度差距的可能原因的位置。排气差距规则集被配置来在旋涡角超过预定阈值范围时,或在检测到另一个温度差距异常指标时输出待为故障排除而执行的步骤。举例来说,排气差距规则集可输出故障排除步骤,其包括(例如)1.在排气温度曲线中正确识别热点和冷点,2.通过气体旋涡角跟踪排气温度异常至特定燃烧室位置,3.识别能够产生燃烧型式变化的硬件。\n[0055] 排气差距规则集的所应用的方法包括估计冷/热点的存在,定位冷/热区,选择最冷/最热热电偶及其在排气室中的对应位置,执行邻近热电偶的检查,使用排气差距规则集转换函数计算旋涡角,从低热电偶的位置追溯旋涡角的量来识别可能原因的位置。\n[0056] 图5是根据本公开的示范性实施例的围绕扩散器406大致均匀间隔开的十二个热电偶408的布置的示意性表示。通过扩散器406的排放气体流将被引导进入或离开图5的页面。基于每个热电偶408在扩散器406中的固定位置,可确定并监视由每个热电偶408感测到的温度与相关联的燃烧室402之间的关系。不确定性区段500可用来描述所确定的旋涡角的相对不确定性。这种不确定性可受(例如)燃气涡轮引擎400上的负荷影响。\n[0057] 图6是说明燃烧器堵塞与排气温度差距之间的相关性的曲线图550。曲线图550包括以燃烧器堵塞百分比为单位标刻度的x轴552和以排气差距的温度为单位标刻度的y轴\n554。迹线556是来自现场分析的几个数据点的曲线拟合,其说明燃烧器堵塞与排气温度差距之间的相关性。\n[0058] 燃烧室402的出口处的温度差距是例如但不限于燃气涡轮引擎400的燃烧模式、燃料分流和燃气涡轮引擎400的功率输出的函数。DLN-1燃烧监视规则集是基于预定阈值范围的简单规则。\n[0059] DLN-1燃烧监视规则集接收以下各项作为输入:\n[0060] 燃烧模式(DLN_MODE_GAS*)\n[0061] 平均排气温度(TTXM*)\n[0062] 排气温度差距(TTXSP1*)\n[0063] 排气温度差距限度(TTXSPL*)\n[0064] 燃烧参考温度(CTF*)\n[0065] 排气温度热电偶读数(TTXD_1、...、TTXD_13*)\n[0066] 用来发信号告知监视异常的阈值主要取决于燃烧模式和燃气涡轮引擎负荷。例如:\n[0067] 预热:60°F\n[0068] 初级模式:45°F\n[0069] 稀薄-稀薄模式:(TTXM-CTF)*0.075+30°F\n[0070] 预混合稳态模式:75°F\n[0071] 扩展稀薄-稀薄模式负荷:80°F\n[0072] DLN-1燃烧监视规则集输出警报、指示,例如但不限于对破损热电偶的检查或对被堵燃烧器的检查。DLN-1燃烧监视规则集还输出用于故障排除的步骤,例如:\n[0073] 1.在排气温度曲线中正确地识别热点和冷点\n[0074] 2.通过已知阈值跟踪排气温度异常\n[0075] 3.调查初级和次级燃烧器参与\n[0076] DLN-1燃烧监视规则集的所应用的方法包括通过分析排气温度数据来定位冷区,选择最冷/最热热电偶及其在排气室中的对应位置,估计冷/热点的存在,检测高于25°F的任何突然差距增加,计算(S1)差距#1(TTXSP1)=最热-最冷热电偶温度、(S2)差距#2(TTXSP2)=最热-第二冷热电偶温度,检查邻近热电偶的一致性,记录相关条件(初级HL、次级、...)下的差距、从DLN-1燃烧器良好实践定义阈值,并且将两个差距与给定阈值进行比较。\n[0077] 图7是根据本公开的示范性实施例的可与燃气涡轮引擎400(图4所示)一起使用的火焰检测器(FD)电路600的示意性框图。在示范性实施例中,火焰检测器电路600可与火焰检测规则集一起使用来提供对火焰检测器(未图示)的健康、灵敏度和可操作性的指示,这导致由仪器故障引起的跳闸的发生率下降。与次级FD灵敏度检查相关联的规则集是基于监视参数的值在预定阈值内的简单规则集。\n[0078] 对FD规则集的输入包括:\n[0079] FD模拟信号(fd_intens_1、...、fd_intens_8)\n[0080] FD逻辑信号(L28FDA、...、L28FDH)\n[0081] 相对湿度信号(CMHUM)\n[0082] FD规则集的输出包括警报,例如但不限于“火焰检测器在改变”和“火焰检测器要调整”。\n[0083] 在示范性实施例中,来自火焰传感器的原始脉冲信号由FD规则集以两种不同方式来处理,模拟输出(FD_INTENS_n)602是通过使用一秒的固定时间窗针对监视目的来产生的频率输出。数字输出(L28FDn)604是通过将基于不同时间窗(例如,1/16秒)的频率输出与控制系统的接口点火/熄火逻辑中设定的对应计数阈值进行比较来产生的。\n[0084] 图8是模拟输出602和数字输出604的迹线的屏幕截图700。检测水平和检测时间是用于FD阈值调整的控制参数。由以下各项计算并定义频率阈值水平:\n[0085] 检测水平=14,(频率阈值=87.5Hz),数字信号是平的且等于1。\n[0086] 检测水平=16,(频率阈值=100Hz),数字信号开始闪烁,从0转换到1。\n[0087] 检测水平=18,(频率阈值=112.5Hz),数字信号闪烁。\n[0088] 检测水平=20,(频率阈值=120Hz),L28fdf的残余峰值。\n[0089] 检测水平=22,(频率水平=137.5Hz),数字信号是平的且等于0。\n[0090] 从对若干现场数据执行的分析,对于每个次级火焰传感器,使用以下条件:\n[0091] 如果(Avg-7*STDV计算)*检测时间(1/16s)<1,则将替换火焰检测器。\n[0092] 如果(Avg-7*STDV计算)*检测时间(1/16s)<2,则将调整火焰检测器。\n[0093] 图9是在加载和卸载过程期间燃气涡轮引擎400的操作的流程图900。轴902指示针对加载操作区域904和卸载操作区域906的GT负荷。箭头指示燃气涡轮引擎400可在穿越操作区域时采用的路径。使用直接转换规则集来计算直接从EXT-LL操作模式直接转换到“预混合”操作模式的可能性。\n[0094] 在示范性实施例中,直接转换规则集是转换函数类型的规则集。直接转换规则集接收以下各项作为输入:\n[0095] 上游燃料气体压力SVR\n[0096] 阀间压力(FPG2*)\n[0097] 压缩机排放压力(PCD*)\n[0098] 环境压力(AFPAP*)\n[0099] 燃料气体温度(FGT2*)\n[0100] 气体控制阀(GCV)、停止比阀(SRV)、气体控制阀(GCV)表征——kv和Xt\n[0101] 次级燃烧器有效区域\n[0102] 直接转换规则集输出:\n[0103] 下游压力GCV\n[0104] 燃料气体流量估计\n[0105] 从EXT-LL直接转换到“预混合”的单元能力的指示\n[0106] 从起动到全负荷,DLN-1操作涉及在多区燃烧衬套中的五种不同燃烧模式。使对不同区的燃料和火焰分配匹配于涡轮速度和负荷条件来获得最佳性能和排放物以及稳定火焰操作。\n[0107] 如果单元正使用当前DLN-1逻辑在“扩展稀薄-稀薄”下运行以便得到“预混合稳态”,则必须:\n[0108] 卸载所述单元低于~40%基本负荷*,转换回到“稀薄-稀薄正”。\n[0109] 通过增加负荷来转换到“预混合稳态”。\n[0110] 此外,如果超过变压器循环周期,则点火变压器保护逻辑引入抑制“预混合”转入的另一限制。\n[0111] 图10是根据本公开的示范性实施例的可与燃气涡轮引擎400(图4所示)一起使用的燃料系统1000的一部分的示意性管线图。\n[0112] DLN-1转入“预混合”的能力与在“次级”转换模式期间在GCV阀1002上维持堵塞条件的能力相关。\n[0113] 界定GCV上游压力1004和SRV上游压力1006以便将所有量的气体送料至“无转换”次级燃料喷嘴1008中,而在“次级”转换模式期间在单元负荷中没有下降。\n[0114] 可实时计算用于产生良好转入“预混合”模式的条件,以便识别“预混合”可用性的放大窗,包括从EXT-LL直接转换到“预混合”。\n[0115] 直接转换EXT-LL“预混合”规则开发包括\n[0116] 第1步-燃料质量流量计算。\n[0117] 假设气体控制阀(GCV)被堵塞并且N=1:\n[0118]\n[0119] 其中\n[0120] k=cp/cv是来自工作CSO的最稀薄气体之一\n[0121] R是来自燃料工作CSO的最稀薄气体之一\n[0122] Aev=作为冲程的函数的有效面积(来自表格或相关性)\n[0123] 第2步-初级燃料喷嘴压力[P8]1010计算,此时仅对次级喷嘴送料。\n[0124] PCC=PCD(1-PLF)-其中PLF~4%\n[0125] 其中:\n[0126] T8=FGT燃料气体温度\n[0127] R是最稀薄气体之一\n[0128] Aeff=作为燃烧器上的压力比的函数的有效面积\n[0129] k=cp/cv是来自工作CSO的最稀薄气体之一\n[0130] R是来自工作CSO的最稀薄气体之一\n[0131] 第3步-下游GCV 1012计算,此时仅对次级喷嘴送料并且P7~P8。\n[0132]\n[0133] Cv=处于0%GSV打开\n[0134] k=cp/cv是来自工作CSO的最稀薄气体之一\n[0135] Sg是来自燃料工作CSO的最稀薄气体之一\n[0136] 第4步-GCV堵塞检验\n[0137] 如果 则单元能够转入除EXT-LL模式之外的“预混合”。\n[0138] 附图中所描绘的逻辑流程不需要所展示的特定次序或先后次序来实现合意的结果。另外,对于所描述的流程,可提供其它步骤或可消除数个步骤,并且可向所描述的系统添加其它组件或从所描述的系统移除数个组件。因而,其它实施例属于所附权利要求书的范围内。\n[0139] 将了解,已经特别详细描述的以上实施例仅仅是实例或可能的实施例,并且存在可以包括在内的许多其它组合、添加或替代物。\n[0140] 而且,组件的特定命名、项目的资本化、属性、数据结构或任何其它编程或结构方面不是强制性的或重要的,并且实施本发明的机构或其特征可具有不同名称、格式或协议。\n此外,所述系统可经由硬件与软件的组合(如所描述)或全部以硬件元件来实施。而且,本说明书中所描述的各种系统组件之间的功能性的特定划分仅仅是一个实例并且不是强制性的;由单个系统组件执行的功能可改为由多个组件执行,并且由多个组件执行的功能可改为由单个组件执行。\n[0141] 以上描述的一些部分按照算法和对信息的运算的符号表示来呈现特征。这些算法描述和表示可由数据处理领域的技术人员用来最有效地将其工作的实质传达给所述领域的其它技术人员。尽管在功能上或在逻辑上描述这些操作,但这些操作被理解为由计算机程序实施。此外,还已经证明在不失一般性的情况下将这些操作布置称为模块或通过功能名称来提及这些操作布置有时是方便的。\n[0142] 如从以上论述中容易明白,除非另有特殊陈述,否则应了解,在整个描述中,利用例如“处理”或“计算”或“推算”或“确定”或“显示”或“提供”等术语的论述是指计算机系统或类似的电子计算装置的动作和过程,其操纵和转变计算机系统存储器或暂存器或者其它此类信息存储、传输或显示装置内的表示为物理(电子)量的数据。\n[0143] 虽然已经按照各种特定实施例来描述本公开,但将认识到,可在权利要求书的精神和范围内用修改来实践本公开。\n[0144] 如本说明书中所使用的术语“处理器”是指中央处理单元、微处理器、微控制器、精简指令集电路(RISC)、专用集成电路(ASIC)、逻辑电路以及能够执行本说明书中所描述的功能的任何其它电路或处理器。\n[0145] 如本说明书中使用,术语“软件”和“固件”是可互换的,并且包括存储在存储器中以供处理器205执行的任何计算机程序,所述存储器包括RAM存储器、ROM存储器、EPROM存储器、EEPROM存储器和非易失性RAM(NVRAM)存储器。上述存储器类型仅为示范性的,并且因此对于能够用于存储计算机程序的存储器的类型不具限制性。\n[0146] 如基于前述说明书将了解,本公开的上述实施例可使用计算机编程或工程设计技术来实施,所述技术包括计算机软件、固件、硬件或者其任何组合或子集,其中所述技术效果包括(a)在存储器装置中存储多个规则集,所述规则集与燃气涡轮的操作相关,所述规则集包括被表达为实时数据输出相对于实时数据输入的关系表达式的至少一个规则,所述关系表达式特定针对于燃气涡轮的排气流的温度差距、排气流的旋涡角、燃气涡轮的多个火焰检测器的健康、以及燃气涡轮从第一操作模式转换到第二较低NOX操作模式中的至少一者;(b)从与燃气涡轮相关联的条件监视系统接收实时和历史数据输入,所述数据输入与影响燃气涡轮的排气流的温度差距、排气流的旋涡角、燃气涡轮的多个燃气检测器的健康、以及燃气涡轮从第一操作模式转换到第二较低NOX操作模式中的至少一者的参数相关;(c)使用所接收的数据确定燃料气体线路压力下降;(d)将所确定的压力下降与预定阈值范围进行比较;以及(e)如果所确定的压力下降满足预定阈值范围,则向燃气涡轮的操作者推荐在不降低燃气涡轮的负荷的情况下使燃气涡轮的操作模式从第一模式转换到第二模式。任何此类所得程序(其具有计算机可读代码构件)可在一个或多个计算机可读媒体内体现或提供,进而根据本公开的所论述的实施例制作计算机程序产品,即制品。计算机可读媒体可为(例如但不限于)固定(硬盘)驱动器、软盘、光盘、磁带、半导体存储器(例如只读存储器(ROM))和/或任何发射/接收媒体(例如因特网或者其它通信网络或链路)。可通过从一个媒体直接执行代码、通过将代码从一个媒体复制到另一个媒体或通过经由网络发射代码来制作和/或使用含有计算机代码的制品。\n[0147] 本说明书中所描述的许多功能单元已经被标示为模块,以便更明确地强调其实施独立性。举例来说,可将模块实施为硬件电路,所述硬件电路包含自定义超大规模集成(“VLSI”)电路或门阵列、成品半导体(例如逻辑芯片)、晶体管或其它离散组件。模块还可在可编程硬件装置中实施,所述可编程硬件装置例如为现场可编程门阵列(FPGA)、可编程阵列逻辑、可编程逻辑装置(PLD)等。\n[0148] 模块还可用软件来实施以供各种类型的处理器执行。举例来说,所识别的可执行代码的模块可包含计算机指令的一个或多个物理或逻辑块,其可(例如)被组织成对象、程序或函数。然而,所识别的模块的可执行代码不需要在物理上位于一起,而是可包含存储在不同位置中的全异指令,所述指令当在逻辑上结合在一起时组成所述模块并且实现所述模块的所述用途。\n[0149] 可执行代码的模块可为单个指令或许多指令,并且甚至可分布在若干个不同代码片段上、不同程序当中以及若干个存储器装置上。类似地,可在本说明书中在模块内识别和说明操作数据,并且所述操作数据可按任何合适的形式来体现并且在任何合适类型的数据结构内组织。可将操作数据收集为单个数据集,或者可将操作数据分布在不同位置上,包括分布在不同存储装置上,并且操作数据可至少部分地仅作为电子信号存在于系统或网络上。\n[0150] 包括规则模块的用于燃气涡轮的方法和监视与诊断系统的上述实施例提供用于提供有意义的操作推荐和故障排除动作的具成本效益且可靠的方式。此外,所述系统是较准确的,并且产生假警报的倾向较小。更具体地说,本说明书中所描述的方法和系统可在比已知系统早得多的阶段预测组件故障以有助于显著减少停机时间并防止跳闸。另外,上述方法和系统有助于在较早阶段预测异常,从而使得现场人员能够准备并计划设备的停工。\n因而,本说明书中所描述的方法和系统有助于以具成本效益且可靠的方式操作燃气涡轮和其它设备。\n[0151] 这个书面描述使用实例来揭示本发明,包括最佳模式,而且还使得本领域的任何技术人员能够实践本发明,包括制作和使用任何装置或系统并且执行任何所并入的方法。\n本公开的可取得专利的范围由权利要求书界定,并且可包括本领域的技术人员想到的其它实例。如果此类其它实例具有未相异于权利要求书的文字语言的结构元件,或者如果其包括与权利要求书的文字语言具有非实质性差异的等效结构元件,则此类其它实例意欲属于权利要求书的范围内。
法律信息
- 2023-02-28
未缴年费专利权终止
IPC(主分类): G05B 23/02
专利号: ZL 201380012462.9
申请日: 2013.03.01
授权公告日: 2017.09.19
- 2017-09-19
- 2015-04-01
实质审查的生效
IPC(主分类): G05B 23/02
专利申请号: 201380012462.9
申请日: 2013.03.01
- 2015-03-04
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2002-01-23
|
2001-02-28
| | |
2
| |
2008-09-17
|
2006-09-20
| | |
3
| |
2006-03-08
|
2005-08-31
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |