著录项信息
专利名称 | 波分复用通信系统中光纤拉曼放大器的信道功率均衡方法 |
申请号 | CN200410042536.6 | 申请日期 | 2004-05-21 |
法律状态 | 权利终止 | 申报国家 | 中国 |
公开/公告日 | 2005-02-16 | 公开/公告号 | CN1580927 |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | H04B10/18 | IPC分类号 | H;0;4;B;1;0;/;1;8;;;H;0;4;J;1;4;/;0;2;;;G;0;2;F;1;/;3;9查看分类表>
|
申请人 | 清华大学 | 申请人地址 | 北京市-82信箱
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 清华大学 | 当前权利人 | 清华大学 |
发明人 | 彭江得;冯雪;张巍;刘小明 |
代理机构 | 暂无 | 代理人 | 暂无 |
摘要
波分复用通信系统中光纤拉曼放大器的信道功率均衡方法属于高速、宽带光通信与光放大器技术领域,其特征在于:在假设泵浦光间和信号光间的拉曼增益系数谱为三角形,忽略信号光间和不同泵浦光间传输损耗的差异的条件下,使多波长泵浦光输入光功率调整量与信道输出功率的均值以及倾斜度之间建立线性关系,再根据计算机通过光功率监测模块监测FRA的输出功率与箝制的目标功率之间的差异,计算出各泵浦光功率的相应调整量,从而在较大的范围内实现FRA输出功率谱的箝制,其箝制输出信道功率的最大偏差不大于0.32dB。
1、波分复用通信系统中的光纤拉曼放大器的信道功率均衡方法,其特征在于:所述的光 纤拉曼放大器是一个具有M个信号波长和N反向泵浦波长且工作在信号总输入光功率不大于 19dBm的光纤拉曼放大器,简称FRA,增益介质为长度为L标准单模传输光纤,M个信号光 波由光纤的一端输入,由组合泵浦源提供的N个波长的泵浦光波经泵浦-信号合波器从传输 光纤的另一端反向输入,一光谱分析仪,简称OSA,从信号分波器的输出端监测输出光谱, OSA的数据输出端与一台计算机相连接,而该计算机同时又与上述组合泵浦源的驱动模块相 连接,通过控制驱动模块的驱动电流来控制各泵浦激光器的输出功率,在该计算机的控制下, 由上述各部件构成的波分复用光通信系统,简称WDM系统,依次按以下的步骤工作:
(1)预先实际测量FRA的输出信道功率谱倾斜度变化量控制参数K1 i,i=1,...,N,输出信 道功率谱平均值变化量的控制参数K2 i,i=1,...,N,它依次包括以下步骤:
(1.1)在系统正常工作的信号输入条件下,调整待测FRA各波长泵浦的驱动电流,从 而调整各泵浦的输出功率,使其输出的功率谱符合正常工作的要求,此时通过计算机获得半 导体驱动泵浦激光器驱动模块的驱动电流值,并通过泵浦激光器的电流-功率曲线计算出各 波长泵浦激光器的对应功率,将泵浦功率和各信道的输出功率记录为标准的泵浦功率 Pi0,i=1...,N,同时通过OSA测量各信道的输出功率,标准信道输出功率 Pk out-nrm,k=1,...,M,并将结果存储于计算机中;
(1.2)根据泵浦激光器的“电流-功率曲线”通过计算机调节某一波长泵浦的驱动电流, 使其输出功率变化为ΔPi0,此时通过OSA测量各信道的输出功率谱,记为 Pik out-cp,k=1,...,M,并将结果存储于计算机中;
(1.3)通过计算机求出此时输出功率的变化量即为FRA开关增益的变化量
k=1,...,M;
(1.4)将ΔGik on-off,ΔPi0代入下式,通过计算机计算出矩阵[B]的相应行:
(1.5)重复(1.2)~(1.4)直到获得矩阵[B]的所有行;
(1.6)通过计算机由[B]根据下式计算出矩阵[C]:
[C]=([B]T[B])-1[B]T;
(1.7)通过计算机根据下式计算出各泵浦的控制参数:
(2)在传输光纤对各泵浦的损耗相等以及各泵浦产生的拉曼增益系数为三角形的近似 条件下,在线自动箝制输出功率谱
(2.1)计算机通过OSA监测系统运行时各信道的输出光功率值,并且存储为 Pk out,k=1,...,M;
(2.2)根据已经预先存储的标准信道输出功率Pk out-nrm,k=1,...,M,通过计算机计算出 各信道的输出光功率变化量:
k=1,...,M
(2.3)通过计算机判断ΔPk out,若ΔPk out大于预先设定的信道功率最大变化量ΔPmax out,则认 为该信道已经关闭,并舍弃该值,得到剩余信道的功率变化序列ΔPRk out,k=1,...,M+ΔM,ΔM 为负值,表示信道数目的变化;
(2.4)通过计算机根据上述的剩余信道功率变化序列ΔPRk out,k=1,...,M+ΔM以及下式 计算出对应的输入信号功率的变化量以及信号拉曼倾斜度变化量:
(2.5)根据计算机的存储的泵浦控制参数K1 i,K2 i,i=1,...,N以及下式计算出所需的各泵浦 功率的改变量:
(i=1,...,N)
(2.6)根据上述的各泵浦功率的变化量重新设置各泵浦功率。
技术领域\n波分复用通信系统中光纤拉曼放大器的信道功率均衡方法属于高速宽带光纤通信与光放 大器技术领域,特别涉及波分复用(WDM)光纤通信网络中信道功率动态均衡的方法及 其功率均衡的光纤拉曼放大器(FRA)。\n背景技术\n波分复用(WDM)光纤通信是现代通信系统的支柱之一,目前正向更高速率、更大容量、 更长距离的方向发展;另外,宽带用户接入设备的使用和交互式多媒体传输等新增业务的开 展,以实现高速大容量宽带综合业务为目标的WDM光通信网络成为近年来国内外研发的“热 点”。作为新一代的光放大技术,光纤拉曼放大器(FRA)以其独具的低噪声、宽频带、工作 波段灵活的优异特性而显示出在高速、大容量、长距离WDM光纤通信网络中诱人的应用前 景。\nFRA的工作原理是利用高功率激光泵浦传输光纤自身的非线性光学效应—受激拉曼散 射(SRS)—将光信号直接放大。比如,将14xx nm波段的泵浦光注入常规石英传输光纤, 即可在15xx nm波段获得光增益。与掺铒光纤放大器(EDFA)相比,FRA具有以下重要特点:\n1、FRA的工作波段决定于泵浦波长,用适当波长的泵浦光可在光纤的整个传输带宽范 围(1292-1660nm)内实现宽带光放大,易于扩展新的通信波段。\n2、FRA具有较宽的增益谱,单个波长泵浦的本征拉曼增益谱平坦范围约20nm,采用 适当功率配比的多个波长泵浦可将增益谱进一步展宽。\n3、FRA可利用传输光纤作增益介质而构成分布式放大器,具有良好的噪声特性,信号 光在传输光纤中的最低功率相对较高,因而可以获得更高的信噪比,有助于增加段间距、延 长传输链路以及便于旧系统的容量升级。\nWDM光通信网络的动态运行要求光放大器对多个波长的传输信道进行均衡放大。这里 所述“动态均衡”具体包括:\n1.在对确定传输带宽内的多个等功率信道(λi)同时放大时,应能为各信道提供基本相 同的光增益G(λi);在对模拟信号放大时,微分增益dG(λ)/dλ应尽可能小,即光放大器应具 有平坦的增益谱。2.当信道数目改变时,应保持恒定的平坦增益谱(称为增益箝制);当信 道功率改变或信道功率和信道数目同时改变时,应自动调整平坦增益谱的幅度而保持恒定的 信道输出功率谱(称为功率箝制)。\n本发明人曾在“实现WDM系统信道功率动态均衡的方法及其均衡光放大器”的专利(专 利号:ZL 97 2 248965.5)中描述了同时实现EDFA输出功率谱平坦和箝制的方法:采用在 EDFA中插入损耗补偿滤波器使静态增益谱平坦化;采用在EDFA中插入可调光衰减器(VOA)来 调整EDFA的增益值;基于增益谱由平均粒子反转度决定的物理机制,通过线性控制VOA和泵 浦功率实现信道功率的箝制。\n然而,上述方法用于宽带、大容量、长距离系统时将受到很大的限制。原因有二:\n1.在宽带、大容量、长距离系统中,信道间由于SRS作用,存在着明显的功率转移,其 表现为输出功率的倾斜,文献“Experimental Investigation of Stimulated Raman Scattering Limitation on WDM Transmission Over Various Types of Fiber Infrastructures,”(IEEE Photonics Technology Letters,Vol.11,No.6,671-673,1999)对此进行了实验报道,如图.1所示。并且倾 斜度随输入信道功率及信道数目的变化而变化。上述方法不能用于调整输出功率谱的倾斜程 度。\n2.在宽带、大容量、长距离系统中,由于传输带宽非常宽(80~120nm),通常采用FRA +(C/L)EDFA的混合放大结构或分布式FRA+分立式FRA的全拉曼放大结构。对于全拉 曼放大结构,无法使用上述方法;而对于混合放大结构,C-EDFA和L-EDFA需要分别控制, 控制方法相对复杂,也不能完全采用上述的方法。\n目前,在采用FRA的WDM系统中,通常每隔数个级联放大节点加入一个集总动态功率 均衡器,对畸变的信道功率谱进行集中整形,使各传输信道的功率相等。这种动态功率均衡 器主要有两种:\n1.解复用/复用器(DMUX/MUX)+可调光衰减器(VOA)或EDFA阵列:传输光纤 中的多波长复用信号光通过DMUX分解成单波长的多个信道,VOA或EDFA阵列调节每个 信道的光衰减或光增益使各信道的光功率相等,经调整的多个单波长信道再由MUX合波后 回到传输光纤。\n2.多声频级联光纤声光滤波器(AOTF):在光纤上加载声波可构成带阻光滤波器,采用 多个不同声波频率激励的级联光纤声光滤波器可展宽滤波频带,调节声波功率可形成与传输 信道功率谱反对称的复合声光滤波谱,使功率较高的信道衰减较大,而功率较低的信道衰减 较小或不被衰减,即可将畸变的信道功率谱调平。\n这两种从传输系统整体运行的角度采用集总动态功率均衡器的方法除了结构复杂、设备 成本昂贵之外,主要问题是:\n第一.从工作原理看,采用VOA阵列或AOTF的集总动态功率均衡器是通过分别调节 各信道的光衰减来实现信道功率谱的均衡,前者以牺牲信道光功率为代价,因而必须用附加 的光放大器进行补偿。\n第二.从设计和兼容性看,集总动态功率均衡器的结构设计与参量配置以及均衡效果完 全依赖于系统的传输性能及实际运行情况,对于不同的传输系统,必须分别进行专门的设计, 因而器件对系统的兼容性较差。\n第三.从使用和管理来看,采用集总动态功率均衡器的系统必须进行大量的现场调试以 及运营时的复杂控制与维护,进一步增大了该技术的复杂性和运营成本。\n发明内容\n本发明的目的在于针对已有技术的不足之处,提出一种解决含FRA的WDM系统信道功 率动态均衡问题的新方法。其基本思路是:当输入信道功率发生改变时,根据输出信道功率 谱的变化,调整泵浦光的功率配置,使得FRA的信道输出功率保持恒定。\n该方法的突出优点是:第一、将动态增益谱平坦和增益幅度调控机制与光放大过程融为 一体,使功率代价降到最低,无需另外配置光放大器进行功率补偿,使结构大为简化,设备 成本降低;第二、因动态均衡光放大器的一体化结构及其工作特性不受系统参量动态变化的 影响,因而其均衡效果不受系统运行状态或其所在位置的影响,既适用于点对点的WDM系 统,也适合于WDM光网络。\n本发明提供了一套基于对泵浦光功率配置进行线性控制的方法,对FRA的输出功率谱进 行动态箝制。其原理如下:\n将FRA的输出信道功率谱的变化量简化为平均值和倾斜度两个参量,并作为控制参量, 通过一线性关系来分别控制各个波长的泵浦光功率。\n为阐明本发明关于FRA输出功率谱动态调控方法的工作原理,需要对FRA中信号光的 输出功率与信号和泵浦光的输入功率的关系进行分析。在实际应用中,通常采用反向泵浦的 FRA,并工作在小信号或近小信号状态,泵浦光功率沿光纤的分布主要取决于泵浦光间的相 互作用。那么,对于一个具有M个信号波长和N个反向泵浦波长的FRA,各光波在光纤中 的演化由下述方程描述:\n\n (1)\n这里k=1,2,...,N代表泵浦波,k=N+1,...,N+M代表信号波,gjk是第j个光波对第 k个光波的拉曼增益系数,Pk(z)和αk分别代表频率为vk的第k个光波的功率和损耗系数,泵 浦波边界条件为Pi(L)=Pi0(i=1,2,...N),信号波的边界条件为Pi(0)=Pi0(i=N+1,...N +M)。由(1)式,可以得到第k个信号波长的净增益(对数坐标下):\n\n其中L为光纤的长度。式(2)右边的第一项代表光纤的损耗(简记为FLk),第二项代表信 号光间的SRS作用的增益(即通常所说的拉曼谱倾斜,简记为Gk SRS),第三项代表泵浦光对 信号光的SRS作用的增益(即通常所说的拉曼开关增益,简记为Gk on-off)。\n假定正常工作时输入FRA的各信道功率相同,并设为Ps0,那么第k个信道的正常输出 功率(dBm)为:\n\n当信道输入功率变为Ps0+ΔPsk时,信号光间SRS作用的增益也将随之变为Gk SRS+ΔGk SRS,第k 个信道的输出功率(dBm)则变为:\n\n为保持输出功率恒定,可调整泵浦光功率,使开关增益变为Gk on-off+ΔGk on-off,对于大多数反 向泵浦的FRA,因其净增益通常为负值(如-10dB左右),其信道输出功率远小于输入功率, 可以认为信号光间SRS作用主要由信道输入功率决定,与FRA的开关增益无关,则第k个 信道的输出功率(dBm)为:\n\n通常,信道输入功率的变化主要是由于网络重构导致链路损耗变化而引起所有信道功率的整 体涨落(记为ΔPs0),或者是由于上/下信道而改变信道数目(记为ΔM)。当上/下信道而改 变信道数目时,只要求使剩余的各信道功率保持恒定,即剩余信道的输出功率与正常工作时 的输出功率相等。将剩余信道的标号记为Rk,可以由(3)、(4)和(5)式得到当输入信 道功率变化ΔPs0、信道数目变化ΔM时,为保持输出功率恒定所需要的开关增益的变化量为:\n\n其中ΔM为信道数目的变化量(上/下信道时分别为正/负值)。\n由文献“Analytical model of Raman gain effects in massive wavelength division multiplexed transmission systems”(IEE Electronics letters,Vol.34,No.8,789-790,1998)中的结果可以得到 信道间的SRS作用的增益谱型在dB/nm的坐标下总是线型的,并且与信号的总输入功率和信 号的有效长度成正比,因而可以用一个参数倾斜度来表示:\n\n其中 为信号光波的有效长度, 为单位波长间隔的拉曼增益系数,在小 于120nm的间隔范围内,可以认为是常数, 是总的信号输入功率,λN+M-λN+1为信 号的带宽。\n同时可以得到信号间SRS作用的增益为1(0dB)的波长为:\n\n在采用了 和ln(1+x)≈x两个近似以后可以得到 由此信号间 SRS的增益谱为一均值为0的直线,可以表示为:\n\n将正常工作时信号的总输入功率MPs0、带宽λN+M-λN+1以及变化后的总输入功率 (M+ΔM)×(Ps0+ΔPs0)、带宽λRM+ΔM-λR1分别代入(7)式和(9)式计算得到(6)式中信道 间拉曼谱倾斜的变化量:\n\n\n(10)\n直接利用(6)式和(10)式即可以求出所需开关增益的变化量。但(6)和(10)式所代表 的等式数目与剩余信道数目有关,这就为实际应用造成了困难。事实上,由于下路的信道对 开关增益没有要求,因而可由剩余信道的开关增益要求延拓到所有的信道:\n\n\n\n\n为了求得所需的泵浦功率变化量,需要首先求解方程(1)中关于泵浦的前N个方程,在光 纤对各泵浦波的损耗相等及相应各泵浦波产生的拉曼增益系数谱为三角型的近似条件下,可 以求得泵浦功率沿光纤的分布为:\n\n其中 为总泵浦输入功率,αp为光纤对泵浦波的衰减系数。\n当泵浦输入功率由Pi0变为Pi0+ΔPi0时,可以由(12)式取一阶泰勒近似求得泵浦功率沿 光纤分布的变化量,并用矩阵表示为:\n\n其中 此时,开关增益的变化量为:\n\n由(13)和(14)式,可以得到开关增益的变化量与泵浦输入功率的变化量的关系为:\n\n其中 \n尽管(15)式中开关增益变化量与泵浦输入功率变化量之间的系数矩阵[B]需要通过复杂 的计算才能得到,但却可以方便地通过实验的方法进行测量。将式(15)右边数矩阵的乘积 简记为矩阵[B],采用最小二乘法,可以由(15)式求解得到泵浦输入功率的变化量与开关增 益变化量的关系:\n\n其中矩阵[C]=([B]T[B])-1[B]T,为矩阵[B]的广义逆矩阵。\n将前面为使信道输出功率变化量为0所要求的开关增益变化量(11)式代入(16)式, 就可以得到所需泵浦输入功率的变化量:\n\n其中:\n\n\n(17)及(18)式表明:为使输出信道功率保持恒定,所需调整的泵浦输入功率变化量 ΔPi0(i=1,2,...N)与信道输入功率变化量ΔPs0 *和由于信道输入功率及信道数目变化所造成 的拉曼增益谱倾斜度的变化量ΔT*成良好的线性关系。因而在实际应用中,可以采取与以上 理论推导顺序相反过程,即预先通过实验测量各泵浦的控制参数(18)式,同时监测信道的 输出功率谱,当信号功率或者信道数目发生变化时,计算出(17)式中所需的两个参数 ΔT*,ΔPs0 *,然后根据(17)式调整泵浦功率,从而实现信道功率的箝制。\n本发明所述方法的特征在于:\n1、从波分复用(WDM)系统中FRA的实际工作状态出发,利用描述泵浦及信号光功率 分布的耦合波方程,在忽略信号光对泵浦功率的消耗、假设泵浦光间和信号光间的拉曼增益 系数谱为三角型、忽略不同波长泵浦光传输损耗的差异的条件下,采用一阶泰勒展开近似方 法,建立了多波长泵浦光输入功率调整量与信道输出功率的均值及倾斜度之间的线性关系;2、 根据监测FRA的输出功率谱与箝制的目标功率谱之间的差值,通过所述线性关系计算出泵浦 光功率的相应调整量,从而在较大的动态范围内实现FRA输出功率谱的箝制。\n它依次含有如下步骤:\n1.预先实验测量控制参数K1 i,K2 i。\n1.1调整待测FRA各泵浦波长的功率,其输出功率谱符合正常工作时的要求,并将泵 浦功率和各信道的输出功率记录为标准的泵浦功率谱Pi0(i=1,...,N)和信道输出功率谱 Pk out-nrm(k=1,...,M);\n1.2调节某一泵浦波长的输出光功率变化ΔPi0,同时保持其他波长的光功率不变,测量 此时FRA的输出功率谱,记为Pik out-cp(k=1,...,M)。此时,由于输入信号没有改变,则输 出功率的变化量即为FRA开关增益的变化量 代入(15)式即可 计算出矩阵[B]相应的行 \n1.3重复步骤(1.2)直至获得矩阵[B];\n1.4由所述得到的矩阵[B]计算出矩阵[C]=([B]T[B])-1[B]T,然后利用(18)式计算出 K1 i,K2 i;\n2.在线自动箝制输出功率谱\n2.1用光监测模块(OPM)监测系统运行时各信道的输出光功率值,记为 Pk out(k=1,...,M),由步骤(1.1)中记录的标准功率值Pk out-nrm(k=1,...,M)计算出各 信道的输出光功率变化量 \n2.2判断输出功率变化量,如果ΔPk out大于规定的值ΔPmax out,则认为是该信道已关闭,并 舍弃该值。由此得到剩余信道的功率变化序列ΔPRk out(k=1,...,M+ΔM)\n2.3根据步骤(2.2)得到剩余信道输出功率变化量,由(6)、(9)、(10)及(11) 式计算出对应的输入信号功率的变化量及拉曼谱倾斜度变化量:\n\n\n\n\n2.4根据步骤(1)中测量的控制参数K1 i,K2 i和(17)式计算出泵浦输出功率的改变量, 重新设置泵浦功率。\n所述方法的物理依据基于FRA输出功率变化量与输入信道功率、信号光间的SRS作用 和拉曼开关增益间变化量的关系,以及拉曼开关增益变化量与泵浦光功率变化量之间的线性 相依关系,通过调整泵浦光功率实现对FRA的输出功率箝制。\n所述方法基于(11)和(17)式所示泵浦功率变化量与信道输入功率变化量和拉曼谱倾 斜度变化量间的关系得出。其中(17)式中的控制系数是一个完全由光纤特性以及正常工作 点的泵浦条件决定的常数,并且可以方便的由实验测量得到;(17)式所需要的控制参数可以 由(19)式所示信道输出功率变化量与信道输入功率变化量和拉曼谱倾斜度变化量间的关系 得到;(19)式中的信道输出功率变化量可以实时监测FRA输出端的输出功率而得到。\n实验证明:各信道的平均功率偏差的最大值小于0.32dB。\n附图说明:\n图.1经过100km NZDSF-光纤传输后的光谱\n图.2实验装置图\n图.3实验中84信道的输入光谱\n图.4泵浦控制参数测量流程图\n图.5FRA输出功率箝制控制流程图\n图.6 84信道输入总功率为13~19dBm时,不控制与控制时的各信道输出功率\n图.7 84信道输入总功率为19dBm,只有C波段或L波段信号时不控制和控制的各信道输出 功率\n具体实施方式:\n根据本发明的一种输出功率箝制FRA的实施例,结合附图,详细说明如下:\n图.2所示为一个采用五个波长的FRA,传输光纤为100km标准普通单模光纤(SMF)。 用于84信道C+L波段DWDM光通信系统,波长范围1529.13-1602.7nm,信号光从F1端 输入传输光纤,信道最小间隔为0.4nm,输入的光谱如图.3所示。五个波长(1423nm,1433nm, 1443nm,1463nm,1493nm)的半导体泵浦激光器经泵浦合波器MUX1合波后,再经泵浦信 号合波器MUX2由光纤F2端注入传输光纤,一台光谱分析仪(OSA),OSA从输出信号分 波器Tap1的0.5%输出端(102)监测输出光谱,在该点的测量值(以dBm为单位)加上102 端和103端的分波比23dB即可得到FRA信号输出端103的信号功率值。OSA测量的结果输 入一台计算机,并由该计算机来控制半导体泵浦激光器的驱动模块,从而控制各波长泵浦的 输出功率。\n该光纤拉曼放大器的工作过程如下:\n1.预先测量控制所需参数,测量流程如图.4所示。\n1.1通过计算机调节各波长泵浦的驱动电流,从而调整各泵浦功率配置,使得FRA在 输入84信道、总功率为17dBm时,平均输出功率约-18dBm,此时通过计算机获得半导体 驱动泵浦激光器驱动模块的驱动电流值,并通过泵浦激光器的电流—功率曲线计算出各波长 泵浦激光器的对应功率,将泵浦功率记录为标准的泵浦功率Pi0(i=1,...,N)(表.2相应行), 并通过OSA测量各信道的输出功率谱并记录为Pk out-nrm(k=1,...,M)(图.3中标准谱所示);\n1.2再根据泵浦激光器的电流—功率曲线逐个改变各波长泵浦的驱动电流,使其输出光 功率改变ΔPi0(表.1相应行),分别测出各个对应的输出功率谱。由此计算出(15)式矩阵 [C]的各矩阵元,计算出矩阵[C]=([B]T[B])-1[B]T,然后利用(18)式计算出K1 i,K2 i(表.1 相应行); Wavelength(nm) 1423 1433 1443 1463 1493 ΔP(mW) 50 30 50 25 50 K1 -5.19927 -0.79283 4.47759 -3.9147 -13.33342 K2 -15.60298 -21.90416 -16.16548 -10.31418 -16.67508\n 表1:泵浦改变量及控制参数\n2.在线自动箝制输出功率谱\n利用表.1中的参数和(17)式即可进行在线控制,控制的流程如图.5所示。实验共分为 两组:第一组,调节84信道的输入总功率由13dBm~19dBm来模拟由于路由路径的改变造 成的信道功率整体涨落,控制前、后的输出功率谱由图.6所示;第二组,调节84信道的输入 总功率为19dBm,并且分别关闭C波段47个信号和L波段37个信号,以此来模拟信道功率 涨落和上/下信道同时发生的情况,控制前后的输出功率谱由图.7所示。我们以各信道的平均 功率偏差:\n\n来衡量控制的精度,在两组实验中,控制偏差如表.2相应列所示,最大偏差小于0.32dB。 Input power (dBm) P1423 P1433 P1443 P1463 P1493 ave_Err (dB) 13 226 193 228 123 231 0.32 14 212 172 214 114 216 0.21 15 196 150 197 104 198 0.23 16 180 128 181 93 182 0.20 17 160 100 160 80 160 0 18 152 89 152 74 151 0.20 19 137 68 136 65 136 0.32 19(C-band only) 125 50 124 57 123 0.31 19(L-band only) 144 77 143 70 143 0.24\n 表2:各种输入情况时的泵浦功率及平均控制偏差
法律信息
- 2013-07-10
未缴年费专利权终止
IPC(主分类): H04B 10/18
专利号: ZL 200410042536.6
申请日: 2004.05.21
授权公告日: 2006.11.01
- 2006-11-01
- 2005-04-20
- 2005-02-16
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有引用任何外部专利数据! |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |