著录项信息
专利名称 | 用于在井眼中采集井下数据的装置和方法以及钻铤 |
申请号 | CN02118887.4 | 申请日期 | 2002-05-09 |
法律状态 | 权利终止 | 申报国家 | 中国 |
公开/公告日 | 2002-12-11 | 公开/公告号 | CN1384272 |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | E21B47/00 | IPC分类号 | E;2;1;B;4;7;/;0;0;;;E;2;1;B;4;7;/;1;2查看分类表>
|
申请人 | 施卢默格海外有限公司 | 申请人地址 | 巴拿马巴拿马城
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 施卢默格海外有限公司 | 当前权利人 | 施卢默格海外有限公司 |
发明人 | J·R·塔巴诺;J·C·戈斯瓦米;A·赫菲尔;B·翁德伍德 |
代理机构 | 中国专利代理(香港)有限公司 | 代理人 | 温大鹏;郑建晖 |
摘要
本发明公开了一种甚至能够在钻井时在井眼内采集井下数据的方法和装置。所述的装置通常包括一个天线和有关的电子电路。天线包括多个阵列式收发器元件,而所述的电子电路利用控制施加给阵列式元件的电能而控制通过天线进行的发射或者接收。在操作时,一个包括这种天线的收发器单元被定位到靠近一个已经放置到一个地层内的一个遥感器附近。一个电磁波信号然后控制用于通过一个无线连接与遥感器通讯。
1.一种用于在井眼中采集井下数据的装置,所述的装置包括:
一个天线,包括多个阵列式收发器元件;以及
电子电路,用于通过控制施加给阵列式元件的电能来控制通过天 线的发射或接收。
2.根据权利要求1所述的装置,其中,阵列式元件包括多个线 圈或者多个形成在导电薄板上的槽。
3.根据权利要求2所述的装置,其中,多个线圈缠绕在一个铁 芯上或者以阵列形式排列在一个柔性板上。
4.根据权利要求2所述的装置,其中,所述的多个线圈中的每 一个线圈是一个圆形线圈或者螺旋线圈。
5.根据权利要求1所述的装置,其中,所述的阵列式元件的至 少一部分以串联形式电连接。
6.根据权利要求5所述的装置,其中,所述的阵列式元件的至 少第二部分以并联形式电连接。
7.根据权利要求1所述的装置,其中,所述的阵列式元件的至 少一部分以并联形式电连接。
8.根据权利要求1所述的装置,其中,所述的电子电路包括多 个能够控制使每一个单个的阵列式元件通电的可开关元件。
9.根据权利要求8所述的装置,其中,所述的可开关元件可以 操作以产生一个从所述的天线发射的实时的、空间剖面随时间变化的 电磁场。
10.根据权利要求1所述的装置,其中,所述的可开关元件可以 操作以产生一个从所述的天线发射的实时的、空间剖面随时间变化的 电磁场。
11.根据权利要求1所述的装置,其中,所述的电子电路轴向控 制发射或者接收。
12.根据权利要求1所述的装置,其中,所述的电子电路还有角 度地控制发射或者接收。
13.一个钻铤,用于在井眼中采集井下数据,所述的钻铤包括:
至少一个收发器;
一个用于在井眼中采集井下数据的装置,所述的装置包括:
一个天线,包括多个阵列式收发器元件;以及
电子电路,用于通过控制施加给阵列式元件的电能来控制收发器 的通过天线的发射或接收;
收发器功率驱动器,用于为收发器提供电能;
一个振荡器,用于确定收发器功率驱动器的频率;以及
调谐的接收器放大器,供收发器在控制接收中使用。
14.根据权利要求13所述的钻铤,其中,所述的阵列式元件的 至少一部分以串联形式电连接。
15.根据权利要求14所述的钻铤,其中,所述的阵列式元件的 至少第二部分以并联形式电连接。
16.根据权利要求13所述的钻铤,其中,所述的阵列式元件的 至少一部分以并联形式电连接。
17.根据权利要求13所述的钻铤,其中,所述的可开关元件可 以控制发射或者接收以产生一个从所述的天线发射的实时的、空间剖 面随时间变化的电磁场。
18.根据权利要求13所述的钻铤,其中,所述的电子电路轴向 控制发射或者接收。
19.根据权利要求13所述的钻铤,其中,所述的电子电路还有 角度地控制发射或者接收。
20.根据权利要求13所述的钻铤,还包括一个用于侧向把一个 遥感器配置到井眼外侧的地下地层内的一个位置的装置。
21.根据权利要求20所述的钻铤,其中,所述的用于侧向配置 远程智能传感器的装置包括一个液压促动器系统,该系统包括一个设 置用于与遥感器配合的液压激励配置柱塞。
22.根据权利要求13所述的钻铤,其中,还包括:
用于将收发器定位在靠近所述用于在井眼中采集井下数据的装 置的装置;和
用于控制电磁信号以通过无线连接与所述用于在井眼中采集井 下数据的装置通讯的装置。
23.根据权利要求13所述的钻铤,其中,定位收发器单元的装 置包括在钻井作业中定位收发器单元的装置。
24.根据权利要求13所述的钻铤,其中,定位收发器单元的装 置包括定位遥感器的装置。
25.根据权利要求13所述的钻铤,其中,还包括将遥感器放置 到地层内的装置。
26.根据权利要求13所述的钻铤,其中,将收发器单元定位在 靠近遥感器的位置上的装置包括将该收发器单元定位在一个处于睡 眠状态的遥感器附近的装置。
27.根据权利要求22所述的钻铤,其中,控制装置包括:
一个天线,包括多个阵列式收发器元件;以及
电子电路,用于通过控制施加给阵列式元件的电能来控制通过天 线的发射或接收。
28.根据权利要求13所述的钻铤,其中,控制电磁信号的装置 包括控制发射或者接收以产生一个实时的、空间剖面随着时间变化的 电磁场的装置。
29.根据权利要求13所述的钻铤,其中,控制发射或者接收以 产生一个实时的、空间剖面随着时间变化的电磁场的装置包括轴向控 制发射或者接收的装置。
30.根据权利要求28所述的钻铤,其中,控制发射或者接收以 产生一个实时的、空间剖面随着时间变化的电磁场的装置包括在倾斜 方向控制发射或者接收的装置。
31.根据权利要求28所述的钻铤,其中,控制发射或者接收以 产生一个实时的、空间剖面随着时间变化的电磁场的装置包括:
一个天线,包括多个阵列式收发器元件;以及
电子电路,用于通过控制施加给阵列式元件的电能来控制通过天 线的发射或接收,该电子电路包括:
能够控制使每一个单个的阵列式元件通电的一组可开关元件。
32.一种在井眼中采集井下数据的方法,所述的方法包括:
提供一含有天线和电子电路的装置,该天线包括多个阵列式收发 器元件;以及
通过该电子电路控制电磁信号以通过无线连接与遥感器通讯。
33.根据权利要求32所述的方法,其中,控制电磁信号的步骤 包括控制发射或者接收以产生一个实时的、空间剖面随着时间变化的 电磁场。
34.根据权利要求33所述的方法,其中,控制发射或者接收以 产生一个实时的、空间剖面随着时间变化的电磁场的步骤包括轴向控 制发射或者接收。
35.根据权利要求33所述的方法,其中,控制发射或者接收以 产生一个实时的、空间剖面随着时间变化的电磁场包括在倾斜方向控 制发射或者接收。
技术领域\n本发明涉及通常意义上的钻井,例如象用于石油产品的生产的钻 井,并且本发明特别涉及地下地层数据的采集,例如地层压力、地层 渗透性或者类似数据的采集。\n背景技术\n在油井描述的服务里,标准地层评估特性的一部分与油藏的压力 和油藏岩石的渗透性有关。当前的操作是借助于“地层测试器”工具 通过电缆测井或钻杆试验获得这些特性,或者是通过钻杆测试获得这 些特性。两种方法在“裸眼井”里和“下套管井”的应用中都可以使 用,并且需要一个补充的“起下钻”过程。起下钻通常涉及到从井眼 里取出钻柱,将一个地层测试器下入到井眼里以采集地层数据,和在 取回地层测试器后,把钻柱放回井眼里用于进一步的钻井。因为“起 下钻”的操作需要花费非常多的钻机时间,所以,通常只有在绝对需 要地层数据的情况下、在换钻头过程中或者当因为一些其它与钻井有 关的原因而取出钻柱时才进行起下钻操作。\n另一方面,在钻井作业期间,在“实时”基础上采集的油藏地层 数据是一笔有价值的资产。钻井时获得的实时地层压力数据允许钻井 工程师或钻探工作出决定以促进钻井所选择的方面,这些决定既涉及 钻井泥浆比重和成分的变化,又涉及在较早时间的穿入特性有关。还 需要得到实时油藏地层数据来对与地层压力的变化和在渗透性方面 的变化有关的钻头重量进行精确的控制,从而以更高的效率执行钻井 操作。\n因此,需要获得当钻柱在井眼内时人们所感兴趣的地下区域的各 种地层数据。这避免了只是为了将地层测试器下入到井眼内以确定地 层特性例如象压力、温度和渗透性等等而需要进行起下钻操作,或是 使得应用这种起下钻操作的可能性最小。一种该技术公开在授权给 2000年2月22日Schlumberger技术公司的美国专利6,028,534中, 其中Schlumberger技术公司是作为发明人Ciglenec等人的受让人。 本专利也同样转让给Schlumberger公司。在该技术中,一个包括传感 器装置和有关的电子装置的遥感器被用到地层内。该遥感器还包括一 个天线和一个电池,以在钻柱在井眼内时与钻铤上的一个主天线连 通。一旦该传感器用在井眼内,该遥感器测量一个或者多个地层特性。 在测量完成后,数据被存储在遥感器内。接着在该遥感器和钻铤之间 建立一个用于数据传输的无线传输通道。\n数据传输通常在钻井操作时进行,至少部分时间内数据传输是在 钻井操作时进行。安装钻铤的钻柱将在钻井操作时进行旋转和直线运 动。然而,借助于传感器用到地层内,这些遥感器都既不作任何显著 的直线移动也不进行任何显著的旋转运动。因此,在数据传输过程中, 钻铤天线相对于远程天线既可以进行旋转运动又可以进行直线运动。 因此,在下面两个主要方面经常需要频繁地在钻铤天线和远程天线之 间进行电磁耦合定位遥感器和用于一旦发现了遥感器后维持整个数据 传输的连通通道。\n本发明直接用于解决或至少减少上面提到的一个或者所有问题。\n发明内容\n本发明包括一种用于在井下甚至在钻井作业过程中采集井眼数据 的方法和装置。该装置包括一个天线和有关的电子电路。该天线包括 多个以阵列形式排列的收发器元件,而电子电路通过控制施加给阵列 收发器元件的电能来控制发射或接收。在操作过程中,包括该天线的 收发器单元定位在放置到地层内的一个遥感器附近。然后借助于无线 连接控制电磁信号与遥感器连通。\n附图简述\n参照下面的连同附图一起的描述可以理解本发明,在附图中类似 的附图标记标识类似的部件,其中这些附图包括:\n图1是定位在一个井眼内的一个钻铤的简图,该钻铤装备有一个 根据本发明的可控制式收发器单元;\n图2是图1中的钻铤的可控制式收发器单元的示意图,表示具有 一个用于将一个遥感器从井眼推进到选定的地下地层内的液压激励系 统;\n图3表示图1中的钻铤的可控制式收发器单元的电子电路的示意 图,该电子电路用于从遥感器接收信号和将信号发送给遥感器;\n图4A、4B、4C和4D说明图3中的可控制式收发器单元的阵列式 天线的几种可替换的实现方式;\n图5A和5B以电子框图形式说明根据本发明的两个不同的实施例 的电子装置,该电子装置用于控制图3中使用的收发器单元的发射和 接收;\n图5C说明图5B中的实施例中的电子控制的一部分的电子框图;\n图6是一个电子框图,示意地说明一个遥感器的电子设备;\n图7是一个框图,示意地连同根据本发明的遥感器一起说明可控 制式收发器单元的操作过程;以及\n图8的曲线描述了在一个特定的实施例中引入了线圈后测量到的 由遥感器接收的电压作为线圈位置函数的曲线。\n尽管本发明很容易进行各种改进和变成其它形式,本发明的具体 的实施例还是以附图中的例子的形式表示,并且在这里进行详细描 述。但是,应该能够理解,这些具体的实施例的描述不是将本发明限 制到具体公开的形式,而是相反,本发明包括了落入到由所附的权利 要求书所定义的本发明的实质和范围内的各种改进、等同物和替代 物。\n具体实施方式\n下面描述本发明的说明性的实施例。为清楚起见,不是所有的实 际实施例的技术特征都在本说明书里进行描述。当然,应该能够理解, 在开发任何这种实际的实施例时,必须作出各种与具体的实施例有关 的决定,以实现开发者的具体目标,例如象符合系统相关或者商业相 关的限制,而这些限制随具体的实施例不同而不同。而且,应该能够 理解,即使是复杂的和化费大量时间的,这样的开发工作对于知晓本 发明公开的内容后的本领域普通技术人员来说都是常规的工作。\n附图1描述了一个钻铤100的一个具体的实施例。该钻铤100只 包括了一个用于钻进一个井眼105的钻柱(未示出)的一部分。钻铤 100设置有一个探头部110,该探头部110包括一个电源盒200,如图 2所示,该电源盒200合并有如图3所示的发射器/接收器电路300。 如图2所示,钻铤100包括一个压力表205,压力表205的压力传感 器210借助于钻铤通道215而暴露在井眼105中的孔眼压力下。压力 表205测量在给定地下地层深度的围压并且用于对遥感器进行压力校 准。代表井眼围压的电信号(未示出)借助于所述的压力表205传递 给电源盒200的电路。电源盒200然后对遥感器115进行压力校准, 如图1所示,该遥感器115被用在某个特定的井眼深度。\n钻铤100还具有一个或者多个遥感器容器120,仍然如图1所示。 每一个传感器容器120包括一个遥感器115,用于定位在感兴趣的给定 地下地层内;该地层被井眼105穿过。正如如下所述,在这个具体的 实施例中,遥感器115定位是在钻井眼105时进行。然而,注意到遥 感器115可以预先安置并与本发明的可控制式收发器单元一起使用。 在该实施例中,通常需要作工作以确定遥感器115的位置,这在下面 进行更详细描述。\n遥感器115是一个被包覆的“智能”传感器,该传感器从钻铤100 移动到井眼105周围的地层内的一位置。该遥感器115测量地层特性 例如象压力、温度、岩石渗透性、孔隙度、电导率、介电常数和其它 特性。遥感器115被恰当地包覆在一个传感器壳体内,该传感器壳体 具有足够的结构一体性,以抵抗从钻铤100侧向嵌入到井眼105周围 的地下地层内运动时产生的破坏。\n附图1说明在大致垂直于井眼105因此也垂直于钻铤100的方向 嵌入到地层内的一个单个的遥感器115。在本发明公开的基础上本领域 的普通技术人员能够理解,这种侧向嵌入运动不一定垂直于井眼105, 而是可以实现按照各种角度攻击到所需的地层内位置。使用传感器的 方法包括以下一种或多种方法:(1)钻进到一个井壁125内并将遥感 器115放置到地层内;(2)借助于液压机或者其它机械穿入装置将被 包覆的遥感器115穿入/压入到地层内;或者(3)通过利用推进剂射 孔弹将遥感器115射入到地层内。根据不同的实施方式,这些技术中 的任意一种都可能是合适的。例如,尽管所述的实施例使用一个液压 机构(下面更详细描述),另一个可选实施例以射弹方式安置遥感器 115。\n图2说明在本说明性的实施例中一个液压激励柱塞220用作此目 的。该柱塞220使用遥感器115并使得该遥感器115穿入到地下地层 内位于井眼105的孔眼130外侧足够远的位置上,从而使其可测量选 定的地层特性。为了应用传感器,钻铤100具有一个内圆柱孔222,在 该内圆柱孔内定位一个具有柱塞220的活塞元件225,该柱塞220与 被包覆的远程智能传感器115之间是驱动关系。活塞元件225暴露在 液压压力下,液压压力借助于一个液压供给通道240而从液压系统235 连通到活塞室230。液压系统235选择性地被电源盒200激发,从而 根据在该地层深度的孔眼周围压力对遥感器115进行校准,如上所述。 然后遥感器115从容器120移动并越过井壁125到地层内,从而使得 地层压力特性不受到孔眼的影响。\n参考附图3,钻铤100的电源盒200包括一个收发器单元305,该 收发器单元305根据一个振荡器315确定的频率而由一个收发器功率 驱动装置310(例如一个功率放大器)进行驱动。收发器单元305将接 收信号,该信号是遥感器115发射到钻铤100的探头部分110上的, 这在下面进行描述。注意到2∶1的比例对于本发明的实施不是必要的, 也可使用其它比例。根据不同的实施方式,收发器单元305包括一个 阵列排列的天线325和一个或者多个收发器330,这也在下面进行更详 细描述。\n图4A、4B、4C和4D说明了电源盒200的阵列式天线325的不同 实施方式。每一个这些实施方式使用多个收发器元件400。在图4A的 实施方式中,每一个收发器元件400包括一个缠绕在铁芯410上的线 圈405,该线圈405缠绕在铁芯410的沟槽415内。图4B中说明了一 个实施方式,其中多个线圈420以阵列形式排列在一个柔性绝缘板425 上,而该绝缘板425可包裹在钻铤100的内侧周围。电能通过各个供 给端子430提供给每一个线圈420。线圈420可是本领域公知的任何 形状。图4C的实施例与图4B中的实施例极为相似,区别在于圆形的 线圈420被螺旋形的线圈435代替。注意到在其它的实施例中线圈 420、435实际上可以由任何形状和类型的线圈代替。图4D说明了一 个实施方式,其中,多个槽式天线440以阵列形式排列在一个金属薄 板445上。金属薄板445可以与钻铤100相适应。注意到,每一个实 施方式都通称为以阵列方式排列的收发器元件组合(即,分别为线圈 405、420、435和槽式天线440),因为它们都可以用于发射和接收信 号。还注意到,附图4A、4B、4C和4D中的实施例的各个方面在某些 实施例中可以结合在一起,例如附图5B中所示并将在下面描述。\n根据不同的实施方式,阵列式元件400可以制成为串联的、并联 的形式或者串联和并联相结合的形式。这种结构可以由收发器功率驱 动器310线控(hardwired)或者控制,在下面将参照附图5A和5B 进行描述。在图4A、4B、4C和4D中所述的发射器/接收器元件的实施 方式在轴向上的距离是可以有很大变化的。但是在激发包括几个线圈 或者槽式天线的轴向长天线中会遇到一定的困难。特别是,所需的电 能是一个限制因素。在需要覆盖较大轴向距离的应用中,这个困难可 以通过在给定的时间内只激发一小组线圈或者槽式天线来解决。这个 设计的局限性可以通过以下参照附图5A、5B中更详细描述的方式来解 决。\n注意到阵列式天线325的结构影响电磁场的产生和传播。就图4A 中的实施例来说,它产生一个轴对称的电磁场。假定每一个线圈具有 同样数量的电流(对于实施本发明来说这是不必要的,但是这仅仅是 为了解释本发明的方法),目的是求解每一个线圈中的电流的方向Pk 和对应的使得函数J(p,d)取最大值的位置dk,所述的函数是磁场的 均质性和振幅的函数:\n\np:={p0,p1,…,pN},pk∈{-1,1}\nd:={d0,d1,…,dN},\n其中,在方程(1)右侧中的第一项使得磁场的平均值最大,而括号内 的第二项保证磁场在轴向方向上的均匀性。从方程(1)中可以清楚地 看出,线圈405之间的距离(d)是一个连续变量,而流过这些线圈的 电流(p)则假定只有两个值(正值和负值)。\n结果,常规优化技术或者不能奏效或者效果不好。一个具体的实 施方式使用了遗传运算法则,该运算法则应用了一种随机检索方法和 离散的各个变量一起进行优化。商用的遗传运算法则例如象GEATbx遗 传和进化运算法则工具箱(商标是MATLABTM)是合适的。选择正常数C1 和C2以给每一项恰当的加权值。由于遗传运算法则使得目标函数取最 大值,因此选择一个足够大的正常数C3以使得括号内的项为一个正 数。这些常数都是依靠经验进行选取,主要是根据电路和信噪比的需 要进行确定。例如,能够被收发器探测到的信号电平具有一个下限。 而且,当工具移动时电路承受信号电平幅度波动的能力也有一个极 限。这些标准决定那些常数可以引用在公式中。一般来说,这些常数 的值应该在1到10之间,包括1和10。在方程(1)中,线圈405的 数量由N表示,所述的线圈构造为串联形式。空间ν表示磁场空间被优 化的区域。\n在优化过程中,对于每一组参数(p,d),在空间ν的每一个点处 计算磁场。这涉及首先为一个单个的线圈405产生一个基本磁场,然 后使用叠代方法计算整个阵列式天线325的整个磁场。尽管叠代可能 控制得不怎么精确,对于低频应用来说,如果空间ν不太接近钻铤100, 这是一个合理的假设。利用叠代的整个磁场计算大大减少了计算时 间。一旦得到了“优化”的一组(p,d),就对整个阵列式天线325进 行有限元(“FEM”)方法分析。图4A中的实施例实现了一个均匀的 磁场,该磁场的幅度极大地取决于所提供的电能,而对于测井工具通 常操作的环境来说,电能是非常有限的。注意到,测井工具经常在大 约5公里的典型深度上作业,必须承受高温(约175度)和高压(通 常为20,000psi)环境。\n现在考虑图4B中的实施例,方程(1)中的目标函数修改为:\n\n其中,是所需的磁场的空间变化量。为便于计算对这些磁场 进行标准化。如上所述,电磁场的空间变化量在数据传输过程中可以 进行改变以保持子弹与钻铤天线之间的恒定通讯。结果,将有几组 (r,z)和(p,d),分别是电流的方向和线圈的位置。这些可以计算 出来并存储起来用于进行实时应用。\n图5A和5B说明如何单个地激发阵列式天线元件500以产生所需 的电磁场空间分布。而且,这些空间分布可以实时调节以保证当两个 天线之间有相对移动时钻铤100和遥感器115的天线605之间恒定的 通讯关系。在图5A中,阵列式天线505是轴对称的,例如如上述的图 4A中的实施例所述。对于该例子,只需对阵列式天线505进行轴向控 制。这就是说,给定了钻铤100和遥感器115的天线605的相对位置 关系后,用一阵列可开关式元件510例如开关515使阵列式天线元件 500的一个适合的子集通电。图5B说明了用于驱动阵列式天线元件500 的通常情况。这里,既可以对激发进行角度控制又可以对激发进行轴 向控制。注意到,在图5A中,阵列式天线元件500构成为串联结构。 然而,在图5A和5B中单个的阵列式天线元件可以按照串联和并联方 式或者两种方式结合的方式进行构造,对图5A中的实施例进行某些 (小)的修改。\n特别是,参考图5A,阵列式天线元件500产生一个轴对称电磁场, 并且如上所述,只需进行轴向控制。注意到,阵列式天线元件500是 缠绕在一个铁芯(未示出)上的线圈,如图4A中的实施例所示。开关 515通过控制传递给各个单独的阵列式天线元件500的电能来实现这 种控制。反过来,开关515由电子控制逻辑电路520进行控制。一旦 控制逻辑电路520确定了它需要改变磁场的模式,该控制逻辑电路520 打开和关闭开关515以实现变化。所述的确定可以是实时的或者可以 预先确定。例如,如果主要关心提供足够的电能给所有的阵列式天线 元件500,开关515可以操作以按照串联顺序将电能提供给它们。如果 主要关心通过某些而不是所有的阵列式天线元件500来从多个遥感器 115获得数据,可以进行其它选择,其中阵列式天线元件500接收电 能。\n现在参考附图5B,所描述的实施例包括图5A中的实施例中的阵列 式天线元件500、开关515的阵列510和控制逻辑电路520。图5B中 的实施例按照与上述图5A中的实施例相同的方式对电磁场施加轴向控 制。然而,图5B中的实施例还包括几层阵列式元件525。这些阵列式 元件525可以是形成在一个薄板530上的线圈,所述的薄板可以与钻 铤100的内表面相适应,如在上述的图4B、4C中的所述的实施例那样。 提供给阵列式元件525的电能由一个开关540的第二阵列535控制, 而该阵列式开关540的操作由控制逻辑电路545控制。注意到在某些 实施例中,控制逻辑电路545的功能可以与控制逻辑电路520的功能 结合以形成一个单个的控制逻辑电路块。一旦控制逻辑电路545确定 了需要改变电磁场的模式,该电路545打开和关闭开关540以进行改 变。这种情况的确定可以是实时的或者可以预先确定,如轴向变化的 情况一样。注意到这些具体的实施例使用了单一的收发器550用于轴 向控制,和多个收发器555用于角度控制,每一层阵列式天线元件525 用一个收发器555。\n因此,在图5B的实施例中,天线560包括一组磁性环形天线500、 525,每一个天线都是一个如上所述的阵列式天线元件。环形天线525 主要提供在径向和倾斜方向的磁场,而环形天线500主要提供在轴向 方向的磁场。环形天线500、525可以由开关515、540和控制逻辑电 路520、545构成。在这种方式中,几乎任何的环形天线500、525的 结合都可以按照串联或者并联方式进行操作、开或关或者在反向极性 的情况下进行工作。天线560因此可以被构造为最大化在一个特定方 向的磁场,并且能够更加灵敏地接收来自那个具体方向的磁场。\n注意到,对于用于轴向的环形天线500,只有一个收发器550,而 对于用于径向的环形天线525有几个收发器555。根据钻铤天线560 相对于遥感器115的位置,径向的环形天线525由不同的信号幅度驱 动。为了测量钻铤天线560相对于遥感器115的天线606(图6中示 出)的相对位置,遥感器115的天线605只要在钻铤天线560停止发 射时就发射短音。钻铤收发器555检测这些短音。如图5C所示,每一 个钻铤收发器555包括一个发射器565、接收器570和双工器575。收 发器555借助于阵列式天线元件560(如图5B所示)和双工器575检 测通过接收器570的短音,然后转发到处理器580。在所述的实施例中 处理器580是一个数字信号处理器(“DSP”)。\n处理器580然后使用三角测量技术计算遥感器115的位置。该位 置信息在初始配置阶段用于开关的正确选择,而在以后阶段用于计算 不同的径向的环形天线525的幅度。发射器565包括一个功率放大器。 功率放大器585由一个可编程振荡器(未示出)构成。每一个功率放 大器585的供给电压(未示出)也是可编程的。每个收发器555的输 出幅度可借助于供给电压编程。为了提高效率,由可编程开关供给装 置来产生供给电压。用脉冲宽度调制器(“PWM”)的供给电压来改变 发射器565的输出幅度,以通过几个互相独立驱动的发射器线圈产生 的不同幅度的叠加磁场在正确方向上控制信号。\n参考附图6,远程“灵敏传感器”115的电子电路通常由电子框图 600表示,它包括至少一个发射器/接收器线圈605或者RF天线,其 接收器用于将一个探测器615的输出610提供给一个控制器电路620。 控制器电路620具有一个它控制的输出625,该输出625供给到一个 压力计630,从而使得压力计输出信号被引导到一个模/数转换器 (“ADC”)/存储器635,它借助于一个导体640接收来自压力计的 信号,并且还借助于导体645接收来自控制器电路620的控制信号。 一个电池650设置在遥感器电路600内,并且通过电源导线655、670 和675与遥感器115的各个电路部件相连接。ADC/存储器电路635的 一个记忆输出680供给到一个接收器线圈控制电路685。接收器线圈控 制电路685的功能是借助于导体690而作为一个发射器/接收器线圈 605的驱动器电路,以将数据发射到发射器/接收器电路300。\n在完整的发射过程中,收发器单元305也作为一个接收器使用, 如图3所示。当接收的信号的幅度为最大值时,遥感器115位于最靠 近位置,以优化钻铤100与遥感器115之间的传输。\n参考附图7,在操作过程中,一旦布置了遥感器115,它开始收集 数据。在一个具体的实施例中,遥感器115包括一个定时器,该定时 器定期激发电子电路600(如图6所示)加电。遥感器115然后采集数 据,将数据存储在ADC/存储器635中,然后返回到睡眠状态。当阵列 式天线325与遥感器115的天线605对齐时,包括一个功率放大器(未 示出)的钻铤发射器700通过阵列式天线元件325发射一个唤醒音给 遥感器115。该唤醒音发射的频率接近于遥感器115的共振频率。如果 阵列式天线元件325足够近,遥感器115则接收穿过其天线605的唤 醒音,通过接收器唤醒电子设备705探测所接收到的信号,然后如果 信号是正确的频率则执行唤醒操作。遥感器115然后发射一个确认信 号给钻铤发射器700并等待接收一个命令。\n当遥感器115被钻铤发射器700唤醒后,遥感器115能够接收和 执行一系列的命令例如象采集数据、发射数据、记忆读取和存储器写 操作。最通常的情况是,钻铤发射器700将指示遥感器115发射数据。 遥感器115将来自发射器710的测量数据穿过天线605发射给发射器/ 接收器电路300,然后进入睡眠状态。发射器/接收器电路300内的接 收器715放大、解调和解码数据。一个位于钻铤电子设备中的双工器 720保护钻铤内的接收器715。钻铤100内的阵列式天线元件325被调 谐以与遥感器115的发射频率形成共振。除了共振频率调节电路725 外,发射器/接收器电路300还包括阵列式开关(如图5A、5B所示), 用于选择激活的天线阵列元件400和它们的极性。\n特别是,钻铤100位于靠近遥感器115的位置。在某些实施方式 中,钻铤100实际上用于布置遥感器115,在这种情况下,钻铤100 将靠近遥感器115。如果遥感器115是以前布置的,其位置可以从有关 布置该传感器的记录中确定其位置。作为最后一种方法,通过振动井 眼105内的钻铤100,收发器单元305可以被用于确定遥感器115的 位置。一个电磁波从钻铤100内的发射器/接收器电路300发射以打开 遥感器115并促使该遥感器115将一个确认的编码的信号送回。“同 步交换”方法可以用于确定遥感器115的位置,因为从遥感器115的 同步交换信号的接收将指示出,钻铤100位于靠近遥感器115足够近 的位置。\n然后,一旦确定了遥感器115的位置后,必须跟踪该遥感器115 的位置。钻铤100与遥感器115之间的通讯通常在钻井操作中进行, 尽管这对于实现本发明是不必要的。因此收发器单元305相对于遥感 器115将产生某种程度的位移和旋转,而这种移动应该被跟踪。这可 以通过确定阵列式元件400或者一组阵列式元件400并接收遥感器115 的一定时间内的同步交换信号来实现,这其中假定了阵列式天线元件 400既沿着轴向排列又沿着倾斜方向排列。利用这些信息,收发器元件 305和遥感器115之间的相对位置可以推断出。一旦推断出它们的相对 位置,控制逻辑电路(例如附图5A、5B中的控制逻辑电路520,545) 可以确定它希望如何改变收发器单元305产生的电磁场,以保持钻铤 100与遥感器115之间的连续接触。\n遥感器115布置到地层内距离井眼105的距离也应该确定。一种 这样的确定方法就是对三个或者更多的阵列式天线元件400接收的同 步交换信号的相差进行三角测量。注意到,距离的确定应该是在位置 确定之后。\n确定遥感器115的位置和布置距离并且跟踪其位置的一个优点是 它允许收发器单元集中在遥感器115的方向产生的电磁场。然而,这 个优点在某些阵列式天线315产生轴对称磁场的实施例中没有显现出 来,因为其磁场根据定义是轴对称的。因此,这个优点的实现对于实 现本发明是不必要的。对于所产生的电磁场不是轴对称的实施例也是 这样的。然而还要注意到,在实现这种优点的实施例中,其可以是实 时进行的并且可以在钻井作业时实现。\n同步交换方法激发遥感器115的电子设备以进入采集和发射状 态,压力数据和其它代表选定选定的地层特性的数据连同传感器的确 认码从遥感器115处获得。注意到,在某些实施例中,遥感器115即 使在睡眠状态时也可以连续采集数据,因此在唤醒时它将进入一个发 射模式。同时,获取压力计数据(压力和温度)和其它选定的地层特 性,并且遥感器115的电子设备将数据转化为一个或者多个系列的数 字信号。该数字信号或者这些数字信号,例如在本例子中,从遥感器 115借助于发射器/接收器电路300发射回到钻铤100。这可以通过将 每一个数据的单个的位同步并编码成某个具体的时序来实现。在获得 了稳定的压力和温度读数并且成功地将读数发射到钻铤100携带的电 路后,(根据具体的实施方式的不同)数据采集和发射或者至少是数 据发射中止。\n无论何时激发所述的序列,位于钻铤100内的发射器/接收器电路 300由收发器功率驱动器310提供电能。按照由振荡器315确定的频 率,一个电磁波从钻铤100发射。所述的频率可以从100KHz到500MHz 范围选取。一旦遥感器115落入到发射器/接收器电路300的影响范围 内,位于遥感器115内的接收器线圈605将利用接收器线圈控制电路 685和线圈605而以两倍最初频率的频率辐射回电磁波。\n在图4A中的一个具体的实施例中,设计了一个八圈线圈。利用一 个商用的FEM编码产生一个基本的电磁场。FEM编码通过利用在一个圆 柱层状介质内线圈响应的分析解来解决简化的几何问题来实现。在轴 向(Z)轴方向从-10到10英寸并且y=7英寸的范围内优化该电磁场。 每一个线圈的方向和位置如图8所示,该图还给出了当1毫安电流穿 过电导率为σF=5.55S/m(ρ=0.18Ω-m)的地层内的一个线圈时天线 所接收的测量电压。曲线指示出在优化区域内电压(以及电磁场)的 较好的均匀性。\n下面是关于本发明的具体实施例的详细描述的结论。上述公开的 具体的实施例只是说明性的,因为对受益于本发明指导的本领域的普 通技术人员来说本发明显然可以按照不同但是等价的方式进行修改和 实施。而且除了下面的权利要求书外对这里所述的构造或设计的细节 没有限制。因此,这里公开的具体的实施例显然可以改变或修改;并 且这些变化是在权利要求所要求的本发明的保护范围之内。因此本发 明的保护范围由下面的权利要求书确定。
法律信息
- 2018-05-29
未缴年费专利权终止
IPC(主分类): E21B 47/00
专利号: ZL 02118887.4
申请日: 2002.05.09
授权公告日: 2008.12.24
- 2008-12-24
- 2004-06-16
- 2002-12-11
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| | 暂无 |
1993-05-25
| | |
2
| | 暂无 |
1995-02-03
| | |
3
| | 暂无 |
1994-06-14
| | |
4
| | 暂无 |
1984-05-31
| | |
5
| | 暂无 |
1999-01-28
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |