1.一种基于模式匹配的城市路径行程时间预测方法,其特征在于,包括以下步骤,(1)采用数据挖掘的方法,创建城市历史交通模式,所述历史交通模式包括城市路段链历史交通模式和城市交叉路口历史延误模式;
(2)创建默认交通模式,所述默认交通模式包括默认路段链交通模式和默认交叉路口延误模式,设定历史交通模式权值α和默认交通模式权值β,定义交通模式的最小支持度阈值χ和最小可信度阈值δ;
(3)确定交通参数,依据设置的交通参数查找匹配的路段链交通模式和交叉路口延误模式;确定路段的通行级别,从而获得路段的平均速度和行程时间以及交叉路口的通行时间;
(4)根据设置的交通参数调整历史交通模式权值α和默认交通模式权值β的值;
(5)根据设置的交通参数,产生m条候选路径,每条候选路径包括若干条路段链和若干个交叉路口,加权计算每条候选路径基于历史交通模式的路径行程时间Th和基于默认交通模式的路径行程时间Td,得到每条候选路径的预测行程时间T,计算公式为:
其中Ti和T′i分别为第i条路段基于历史交通模式的行程时间和基于默认交通模式的延误时间,Tj和T′j分别为第j个交叉路口基于历史交叉模式和默认交通的延误时间,α和β为采用经过所述步骤(4)调整后的值;
(6)m条候选路径的预测行程时间全部计算完成后,在候选路径中选择一条预测行程时间最短的路径作为推荐路径,所述推荐路径的预测行程时间为最终的路径预测行程时间;
所述步骤(1)包括以下步骤:
1-1)定义时空维:时空维包括时间维和空间维,所述时间维分为年、季节、月、星期、小时、半小时;所述空间维分为路段链;
1-2)依据道路上车辆的平均行驶速度划分道路通行级别:
1-3)定义城市道路网络为一个无向带权图G=(V,E,Q),
其中:V是顶点的集合,E是边的集合,城市道路网络中的每个交叉路口为无向带权图中的一个顶点,用ni表示,ni∈V,并对每个顶点进行编号,城市道路网络中的一条路段e为无向带权图中的一条边,用一个二元组(ni,nj)表示,e∈E,ni,nj表示路段e的结点,ni∈V,nj∈V,Q为正的实数集合,表示路段所对应的长度;
1-4)定义路段链历史交通模式为STP:(W,TI,H,L(ni,nj),D,R,S,C),
其中W表示星期几,值为1~7;TI为时间索引;H代表是否为假期;L(ni,nj)为路段链;D为方向;R为道路通行级别,值为0~9;S为支持度;C为可信度;
1-5)定义交叉路口历史延误模式为IDP:(W,TI,H,L(ni,nj),L(nj,nk),P,Davg),其中W表示星期几,值为1~7;TI为时间索引;H代表是否为假期;L(ni,nj)代表交叉路口的起始路段,L(nj,nk)代表交叉路口的离开路段,P代表交叉路口的延误类型,取值为L,T,R分别表示左转向延误,通行延误,右转向延误;Davg代表平均延误时间;
所述步骤(2)中,由交通管理部门或专家创建默认路段链和交叉路口模式,具体包括以下步骤:
2-1)定义默认路段链模式为STP’:(W’,TI’,H’,L(ni,nj)’,D’,R’,S’,C’),其中W’表示星期几,值为1~7;TI’为时间索引;H’代表是否为假期;L(ni,nj)’为路段链;D’为方向;R’ 为道路通行级别;S’和C’的取值分别取最小支持度阈值χ和最小可信度阈值δ;
2-2)定义默认的交叉路口模式为IDP’:(W’,TI’,H’,L(ni,nj),L(nj,nk),P’,Davg’),其中W’表示星期几,值为1~7;TI’为时间索引;H’代表是否为假期;L(ni,nj)代表交叉路口的起始路段,L(nj,nk)代表交叉路口的离开路段,P’代表交叉路口的延误类型,取值为L,T,R分别表示左转向延误,通行延误,右转向延误;Davg’代表默认延误时间;
所述步骤(4)根据设置的交通参数调整历史交通模式权值α和默认交通模式权值β的值,具体包括以下步骤:
依据1:if浮动车稀少thenα=α-5%,β=β+5%;
依据2:if恶劣天气thenα=α+5%,β=β-5%;
依据3:if缺乏匹配的历史交通模式thenα=0,β=1;
依据4:if缺乏默认交通模式thenα=1,β=0;
所述浮动车稀少为历史数据库中路段链上浮动车覆盖率低于3%,所述恶劣天气为依据经验的设定具体天气参数;
所述步骤(5),加权计算基于历史交通模式的路径行程时间Th和基于默认交通模式的路径行程时间Td,具体包括以下步骤:
5-1)所述加权计算基于历史交通模式的路径行程时间Th的方法为:对于每条候选路径,根据设置的交通参数结合候选路径中的路段链,查找匹配的路段链历史交通模式,获得该候选路径的所有路段链的道路通行级别,根据路段链的道路通行级别获得相应的路段链的车辆平均行驶速度vi,计算出每条路段链i的行程时间ti=Li/vi,基于路段链历史交通模式的路段链行程时间Th1为: Li为路段 链i的距离,n为一条候选路径中路段链的条数;根据设置的交通参数结合候选路径中的路段链,查找匹配的交叉路口历史延误模式,获得所述候选路径的所有路口的延误时间tj,计算出所有路口的延误时间Th2为:
所述加权计算每条候选路径基于历史交通模式的路径行程时间Th为Th=Th1+Th2;
5-2)所述加权计算基于默认交通模式的路径行程时间Td的方法为:对于每条候选路径,根据设置的交通参数结合候选路径中的路段链,查找匹配的默认路段链交通模式,获得所述候选路径的所有路段链的道路通行级别,根据路段链的道路通行级别获得相应的路段链的车辆平均行驶速度v′i,计算出每条路段链i的行程时间t′i=Li/v′i,基于默认路段链交通模式的路段链的行程时间Td1为: Li为路段链i的距离,n为一条候选路径中路段链的条数,根据设置的交通参数结合候选路径中的路段链,查找匹配的默认交叉路口延误模式,获得该候选路径的所有路口的延误时间t′j,计算出所有路口的延误时间所述加权计算每条候选路径基于默认交通模式的路径行程时间Td为:Td=Td1+
Td2。
2.根据权利要求1所述的一种基于模式匹配的城市路径行程时间预测方法,其特征在于,所述步骤1-2)道路通行级别划分为10级,分别为:平均速度为0~5km/h定义为10级;平均速度为6~10km/h定义为9级;平均速度为11~15km/h定义为8级;平均速度为16~20km/h定义为7级;平均速度为21~25km/h定义为6级;平均速度为26~30km/h定义为5级;平均速度为31~35km/h定义为4级;平均速度为36~40km/h定义为3级;平均速度为40~60km/h定义为2级;平均速度为大于60km/h定义为1级。
3.根据权利要求1所述的一种基于模式匹配的城市路径行程时间预测方法,其特征在于,所述步骤(2)中,所述历史交通模式权值α的初始值、默认交通模式权值β的初始值、交通模式的最小支持度 阈值χ和最小可信度阈值δ由交通领域专家设置;
所述历史交通模式权值α、默认交通模式权值β的约束条件为:α∈[0,1],β∈[0,1]且α+β=1;
最小支持度阈值χ和最小可信度阈值δ约束条件为:χ∈[0,1],δ∈[0,1]。
4.根据权利要求1所述的一种基于模式匹配的城市路径行程时间预测方法,其特征在于,所述路段链的车辆平均行驶速度为每一条道路通行级别车辆的平均行驶速度,所述道路通行级别车辆的平均行驶速度为道路通行级别车辆的平均速度范围的中间值,具体为:
10级通行级别车辆的平均行驶速度为2.5km/h,9级通行级别车辆的平均行驶速度为8km/h,
8级通行级别车辆的平均行驶速度为13.5km/h,7级通行级别车辆的平均行驶速度为16km/h,6级通行级别车辆的平均行驶速度为23km/h,5级通行级别车辆的平均行驶速度为28km/h,4级通行级别车辆的平均行驶速度为33km/h,3级通行级别车辆的平均行驶速度为78km/h,2级通行级别车辆的平均行驶速度为50km/h,1级通行级别车辆的平均行驶速度定义为
60km/h。
一种基于模式匹配的城市路径行程时间预测方法\n技术领域\n[0001] 本发明涉及智能交通领域,特别涉及一种基于模式匹配的城市路径行程时间预测方法。\n背景技术\n[0002] 在智能交通研究领域,如何提高交通服务水平,许多国家和地区已经开展了城市道路行程时间预测的研究,并已成为国际研究的热点之一。目前已有的行程时间预测方法主要侧重于可预测事件以及特殊天气对交通方式的影响。\n[0003] 现有的城市路径行程时间预测方法预测精度不高,在预测过程中不考虑交通模式,不能够动态调整各种交通事件对行程时间影响的权值,车辆行程时间预测的精度不高。\n发明内容\n[0004] 本发明提出了一种基于模式匹配的城市路径行程时间预测方法。本发明能有效挖掘交通历史数据,可以对城市路径的行程时间进行预测,从而引导车辆合理选择出行路线,对于缓解城市交通拥堵有重要作用,并且易于在大中型城市中推广应用。\n[0005] 为了达到上述目的,本发明所采用的技术方案为:\n[0006] 一种基于模式匹配的城市路径行程时间预测方法,包括以下步骤:\n[0007] (1)采用数据挖掘的方法,创建城市路段链历史交通模式和城市交叉路口历史延误模式,路段链历史交通模式和交叉路口历史延误模式均属于历史交通模式;\n[0008] (2)由交通管理部门或专家创建默认交通模式,默认交通模式包括默认路段链交通模式和默认交叉路口延误模式,设定历史交通模式权值α和默认交通模式权值β,定义交通模式的最小支持度阈值χ和最小可信度阈值δ;\n[0009] (3)用户确定交通参数,包括车辆出行的起点、终点、出行时刻、出行日期和天气状况,依据设置的交通参数查找匹配的路段链交通模式(路段链历史交通模式、默认路段链交通模式)和交叉路口的交通模式(城市交叉路口历史延误模式、默认交叉路口延误模式);确定路段的通行级别,从而获得路段的平均速度和行程时间以及交叉路口的通行时间;\n[0010] (4)根据设置的交通参数调整历史交通模式权值α和默认交通模式权值β的值;\n[0011] (5)根据设置的交通参数,产生m条候选路径,每条候选路径由若干条路段链和若干个交叉路口组成(路段链和交叉路口的个数与用户选择的路径起止点相关),加权计算每条候选路径基于历史交通模式的路径行程时间Th和基于默认交通模式的路径行程时间Td,得到每条候选路径的预测行程时间T,计算公式为: T=\nαTh+βTd,其中Ti和T′i分别为第i条路段基于历史交通模式(路段链历史交通模式和交叉路口历史延误模式)的行程时间和基于默认交通模式(默认路段链交通模式和默认交叉路口延误模式)的延误时间,Tj和T′j分别为第j个交叉路口基于历史交叉模式和默认交通的延误时间,α和β为采用经过所述步骤4)调整后的值;\n[0012] (6)m条候选路径的预测行程时间都计算完成后,在候选路径中选择一条预测行程时间最短的路径作为推荐路径,该路径的预测行程时间即为最终的路径预测行程时间。\n[0013] 所述步骤(1)具体包括以下步骤:\n[0014] 1-1)定义时空维,所述时间维分为年、季节、月、星期、小时、半小时;所述空间维分为路段链;\n[0015] 1-2)依据道路上车辆的平均行驶速度将道路通行级别分为10级:平均速度(道路上车辆的平均行驶速度)为0~5km/h定义为10级;平均速度为6~10km/h定义为9级;平均速度为11~15km/h定义为8级;平均速度为16~20km/h定义为7级;平均速度为21~25km/h定义为6级;平均速度为26~30km/h定义为5级;平均速度为31~35km/h定义为4级;平均速度为36~40km/h定义为3级;平均速度为40~60km/h定义为2级;平均速度为大于60km/h定义为1级;\n[0016] 1-3)定义城市道路网络为一个无向带权图G=(V,E,Q),其中:V是顶点的集合,E是边的集合,城市道路网络中的每个交叉路口即为无向带权图中的一个顶点,用ni表示,ni∈V,并对每个顶点进行编号,城市道路网络中的一条路段e即为无向带权图中的一条边,用一个二元组(ni,nj)表示,e∈E,ni,nj表示路段e的结点,ni∈V,nj∈V,Q为正的实数集合,表示路段所对应的长度;\n[0017] 1-4)定义路段链历史交通模式为STP:(W,TI,H,L(ni,nj),D,R,S,C),其中W表示星期几,值为1~7;TI为时间索引,值为1~48,分别表示一天的每半小时;H代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)为路段链;D为方向,值为0和1,0表示起点编号大于终点编号,1表示起点编号小于通行级别为R;\n[0018] 终点编号;R为道路通行级别,值为0~9;S为支持度;C为可信度;\n[0019] 路段链历史交通模式即为:if工作日/假期&时间&路段链&方向&支持度为S&可信度为Cthen道路;\n[0020] 1-5)定义交叉路口历史延误模式为IDP:(W,TI,H,L(ni,nj),L(nj,nk),P,Davg),其中W表示星期几,值为1~7;TI为时间索引,值为1~48,分别表示一天的每半小时;H代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)代表交叉路口的起始路段,L(nj,nk)代表交叉路口的离开路段,P代表交叉路口的延误类型,取值为L,T,R分别表示左转向延误,通行延误,右转向延误;Davg代表平均延误时间。\n[0021] 步骤(2)中,由交通管理部门或专家创建默认路段链交通模式为STP’:(W’,TI’,H’,L(ni,nj)’,D’,R’,S’,C’),其中W’表示星期几,值为1~7;TI’为时间索引,值为1~48,分别表示一天的每半小时;H’代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)’为路段链;D’为方向,值为0和1,0表示起点编号大于终点编号,1表示起点编号小于终点编号;R’为道路通行级别,值为0~9;S’和C’的取值分别取最小支持度阈值χ和最小可信度阈值δ;所述默认路段链交通模式即为:if工作日/假期&时间&路段链&方向then道路通行级别为R’。\n[0022] 2-2)定义默认的交叉路口模式为IDP’:(W’,TI’,H’,L(ni,nj),L(nj,nk),P’,Davg’),其中W’表示星期几,值为1~7;TI’为时间索引,值为1~48,分别表示一天的每半小时;H’代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)代表交叉路口的起始路段,L(nj,nk)代表交叉路口的离开路段,P’代表交叉路口的延误类型,取值为L,T,R分别表示左转向延误,通行延误,右转向延误;Davg’代表默认延误时间。\n[0023] 前述的步骤(2)中,所述历史交通模式权值α和默认交通模式权值β的初始值以及交通模式的最小支持度阈值χ和最小可信度阈值δ由交通领域专家提出,且所述历史交通模式权值α和默认交通模式权值β满足:α∈[0,1],β∈[0,1]且α+β=1,最小支持度阈值χ和最小可信度阈值δ满足:χ∈[0,1],δ∈[0,1]。\n[0024] 前述的步骤(4)中,根据设置的交通参数调整历史交通模式权值α和默认交通模式权值β的值,具体调整过程为:\n[0025] 依据1:if浮动车稀少thenα=α-5%,β=β+5%;\n[0026] 依据2:if恶劣天气thenα=α+5%,β=β-5%;\n[0027] 依据3:if缺乏匹配的历史交通模式(路段链历史交通模式和交叉路口历史延误模式)thenα=0,β=1;\n[0028] 依据4:if缺乏默认交通模式(默认路段链交通模式和默认交叉路口延误模式)\nthenα=1,β=0;\n[0029] 所述浮动车稀少是指历史数据库中路段链上浮动车覆盖率低于3%;所述恶劣天气是指“下大雨”,“下大雪”等严重影响交通出行的天气,恶劣天气的参数具体内容由交通管理部门或者专家设置。\n[0030] 前述的步骤(5)中,加权计算基于历史交通模式的路径行程时间Th和基于默认交通模式的路径行程时间Td:\n[0031] 所述基于历史交通模式的路径行程时间的方法为:对于每条候选路径,根据设置的交通参数结合候选路径中的路段链,查找匹配的路段链历史交通模式,进一步获得该候选路径的所有路段链的道路通行级别,再根据路段链的道路通行级别获得相应的路段链的车辆平均行驶速度vi,最后计算出每条路段链i的行程时间ti=Li/vi,则基于路段链历史交通模式的路段链行程时间Th1为: Li为路段链i的距离,n为一条候选路径中路段\n链的条数;根据设置的交通参数结合候选路径中的路段链,查找匹配的交叉路口历史延误模式,进一步获得该候选路径的所有路口的延误时间tj,最后计算出所有路口的历史延误时间Th2为: 则基于历史交通模式(路段链历史交通模式和交叉路口历史延误模\n式)的路径行程时间Th为Th=Th1+Th2。\n[0032] 所述加权计算基于默认交通模式的路径行程时间的方法为:对于每条候选路径,根据设置的交通参数结合候选路径中的路段链,查找匹配的默认路段链交通模式,进一步获得该候选路径的所有路段链的道路通行级别,再根据路段链的道路通行级别获得相应的路段链的车辆平均行驶速度v′i,最后计算出每条路段链i的行程时间t′i=Li/v′i,则基于默认路段链交通模式的路段链的行程时间Td1为: Li为路段链i的距离,n为一条\n候选路径中路段链的条数,根据设置的交通参数结合候选路径中的路段链,查找匹配的默认交叉路口延误模式,进一步获得该候选路径的所有路口的延误时间t′j,最后计算出所有交叉路口的延误时间 则基于默认交通模式(默认路段链交通模式和默认交叉路\n口延误模式)的路径行程时间Td为:Td=Td1+Td2。\n[0033] 前述的路段平均行驶速度是指:定义每一道路通行级别车辆的平均行驶速度为该通行级别的平均速度范围的中间值,具体为:10级通行级别车辆的平均行驶速度为2.5km/h,9级通行级别车辆的平均行驶速度为8km/h,8级通行级别车辆的平均行驶速度为13.5km/h,7级通行级别车辆的平均行驶速度为16km/h,6级通行级别车辆的平均行驶速度为23km/h,5级通行级别车辆的平均行驶速度为28km/h,4级通行级别车辆的平均行驶速度为33km/h,3级通行级别车辆的平均行驶速度为78km/h,2级通行级别车辆的平均行驶速度为50km/h,1级通行级别车辆的平均行驶速度定义为60km/h。\n[0034] 本发明与已有技术相比,其效果是积极和明显的。本发明具有以下优点:\n[0035] 本发明提供的城市路径行程时间预测方法,基于周期模式,而周期模式存在于移动对象(车辆)的运动过程中,如城市交通的早晚拥堵情况。周期模式挖掘能发现移动对象的内部行为特征,可以用来预测将来的运动趋势。本发明着眼于交通信息采集设备的历史交通数据,利用现有资源挖掘二次信息,依据不同时段、不同季节、不同天气构造不同的交通模式,更加符合中国的实际,因为大部分城市人们的出行习惯与天气、节假日、早晚高峰期密切相关。利用本发明可以对城市路径的行程时间进行预测,从而能够引导车辆合理选择城市道路,缓解大中城市交通拥堵问题。\n附图说明\n[0036] 图1为本发明的基于模式匹配的城市路径行程时间预测方法流程图。\n具体实施方式\n[0037] 现结合附图和具体实施方式,对本发明做进一步说明:\n[0038] 本发明的基于模式匹配的城市路径行程时间预测方法,如图1所示,包括以下步骤:\n[0039] 第一步S100,采用数据挖掘的方法,采用数据挖掘的方法,创建城市路段链历史交通模式和城市交叉路口延误模式,路段链历史交通模式和交叉路口延误模式属于历史交通模式的范畴;为了计算基于历史交通模式的行程时间,需要给出时空维、道路网络和交通模式的定义,分别为:\n[0040] 1)定义时空维,时间维分为“年”、“季节”、“月”、“星期”、“小时”、“半小时”;空间维分为路段链。\n[0041] 2)依据道路上车辆的平均行驶速度将道路通行级别分为10级:平均速度为0~\n5km/h定义为10级;平均速度为6~10km/h定义为9级;平均速度为11~15km/h定义为8级;平均速度为16~20km/h定义为7级;平均速度为21~25km/h定义为6级;平均速度为26~30km/h定义为5级;平均速度为31~35km/h定义为4级;平均速度为36~40km/h定义为3级;平均速度为40~60km/h定义为2级;平均速度为大于60km/h定义为1级,即交通畅通。每级的平均速度可以由交通管理部门或专家定义。\n[0042] 3)定义城市道路网络为一个无向带权图G=(V,E,Q),其中:V是顶点的集合,E是边的集合,城市道路网络中的每个交叉路口即为无向带权图中的一个顶点,用ni表示,ni∈V,并对每个顶点进行编号,城市道路网络中的一条路段e即为无向带权图中的一条边,用一个二元组(ni,nj)表示,e∈E,ni,nj表示路段e的结点,ni∈V,nj∈V,Q为正的实数集合,表示路段所对应的长度。\n[0043] 4)定义路段链历史交通模式为STP:(W,TI,H,L(ni,nj),D,R,S,C),其中W表示星期几,值为1~7;TI为时间索引,值为1~48,分别表示一天的每半小时;H代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)为路段链;D为方向,值为0和1,0表示起点编号大于终点编号,1表示起点编号小于终点编号;R为道路通行级别,值为0~9;S为支持度;C为可信度;所述路段链历史交通模式即为:if工作日/假期&时间&路段链&方向then道路通行级别为R。例如,STP:(1,16,0,L(600,605),0,4,0.7,0.85),含义为(星期一,8:00,工作日,路段链L(600,605),方向为结点605至结点600行驶,拥堵4级,支持度为0.7,可信度为0.85)。\n假定设定最小支持度和可信度阈值分别为0.7,0.7;这样可以将上述STP:(1,16,0,L(600,\n605),0,4,0.7,0.85)即为:if工作日&8:00&路段链L(600,605)&方向为结点605至结点600行驶&支持度为0.7&可信度为0.85then路段L(600,605)的通行级别为4级。\n[0044] 5)定义交叉路口历史延误模式为IDP:(W,TI,H,L(ni,nj),L(nj,nk),P,Davg),其中W表示星期几,值为1~7;TI为时间索引,值为1~48,分别表示一天的每半小时;H代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)代表交叉路口的起始路段,L(nj,nk)代表交叉路口的离开路段,P代表交叉路口的延误类型,取值为L,T,R分别表示左转向延误,通行延误,右转向延误;Davg代表平均延误时间。例如,IDP:(1,16,0,L(600,605),L(605,\n625),T,15),含义为(星期一,8:00,工作日,离开路段L(600,605),驶入路段L(605,625),直行,延误15秒),即为:if工作日&8:00&路段链L(600,605)直行至路段链L(605,625)&then延误15秒。\n[0045] 第二步S200,由交通管理部门或专家创建默认交通模式(默认路段链交通模式和默认交叉路口延误模式),分别为不同时间维和空间维的路段定义道路通行级别,级别越高越拥堵,同时设定历史交通模式权值α和默认交通模式权值β以及定义交通模式的最小支持度阈值χ和最小可信度阈值δ。\n[0046] 由交通领域专家设定历史交通规则权值α和默认交通规则权值β的初始值,且满足:α∈[0,1],β∈[0,1]且α+β=1。如α和β的初始值分别为0.75、0.25;最小支持度阈值χ和最小可信度阈值δ满足:χ∈[0,1],δ∈[0,1],如χ和δ的初始值分别为0.70、0.70。\n[0047] 采用与历史交通模式相同的定义方法,定义默认路段链交通模式为STP’:(W’,TI’,H’,L(ni,nj)’,D’,R’,S’,C’),其中W’表示星期几,值为1~7;TI’为时间索引,值为1~\n48,分别表示一天的每半小时;H’代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)’为路段链;D’为方向,值为0和1,0表示起点编号大于终点编号,1表示起点编号小于终点编号;R’为道路通行级别,值为0~9;S’和C’的取值分别取最小支持度阈值χ和最小可信度阈值δ;所述默认交通模式即为:if工作日/假期&时间&路段链&方向&支持度为χ&可信度为δthen道路通行级别为R’。例如,STP’:(1,16,0,L(700,705),1,3,0.70,0.70),含义为(星期一,8:00,工作日,路段链L(700,705),方向为结点700至结点705行驶,道路通行级别3级,支持度为0.70,可信度为0.70),即为:if工作日&8:00&路段链L(700,705)&方向为结点\n700至结点705行驶&支持度为0.70&可信度为0.70then路段通行级别为3级。\n[0048] 定义默认的交叉路口延误模式为IDP’:(W’,TI’,H’,L(ni,nj),L(nj,nk),P’,Davg’),其中W’表示星期几,值为1~7;TI’为时间索引,值为1~48,分别表示一天的每半小时;H’代表是否为假期,值为0和1,1表示假期,0表示工作日;L(ni,nj)代表交叉路口的起始路段,L(nj,nk)代表交叉路口的离开路段,P’代表交叉路口的延误类型,取值为L,T,R分别表示左转向延误,通行延误,右转向延误;Davg’代表默认延误时间。例如,IDP’:(1,16,0,L(600,605),L(605,625),T,20),含义为(星期一,8:00,工作日,离开路段L(600,605),驶入路段L(605,625),直行,延误20秒),即为:if工作日&8:00&路段链L(600,605)直行至路段链L(605,625)&then默认延误20秒。\n[0049] 第三步S300,设置交通参数,包括车辆出行的起点、终点、出行时刻、出行日期和天气状况,依据设置的交通参数查找满足条件的历史交通模式和默认交通模式,确定路段的通行级别,从而获得路段的平均速度。具体为:\n[0050] 根据出行起点和终点,获得几条候选路径,分别对应一系列路段链;\n[0051] 根据出行时刻,可以计算出时间索引;\n[0052] 根据出行日期,确定星期几,是否工作日;\n[0053] 根据天气状况,调整调整历史交通规则和默认交通规则的权值。\n[0054] 第四步S400,读取实时交通参数,根据实时交通参数,如天气状况,浮动车的数量,调整历史交通规则权值α和默认交通规则权值β的值调整α和β的值,为:\n[0055] 依据1:if浮动车稀少thenα=α-5%,β=β+5%;\n[0056] 依据2:if恶劣天气thenα=α+5%,β=β-5%;\n[0057] 依据3:if缺乏匹配的历史交通模式(路段链历史交通模式和交叉路口历史延误模式)thenα=0,β=1;\n[0058] 依据4:if缺乏默认交通模式(默认路段链交通模式和默认交叉路口延误模式)\nthenα=1,β=0;\n[0059] 其中,浮动车稀少是指历史数据库中路段上浮动车覆盖率低于3%。浮动车一般是指安装了车载GPS定位装置的公交车和出租车。浮动车覆盖率指行驶车辆中设置为浮动车的比率。浮动车的覆盖率是历史交通数据的系统参数,如果城市道路网上浮动车的覆盖率达到3%~5%,采集频率1次/分钟,上传频率1次/5分钟,准确度可以达到95%,可以满足实时应用的要求,无需调整历史交通规则权值和默认交通规则权值,采集频率指定期记录车辆位置、方向、速度信息的频率;上传频率指浮动车位置数据通过无线通讯定期传输到信息处理中心的频率。所述恶劣天气是指“下大雨”,“下大雪”等严重影响交通出行的天气。\n[0060] 第五步S500,对于每条候选路径,加权计算基于历史交通模式的路径行程时间Th和基于默认交通模式的路径行程时间Td,具体方法为:\n[0061] 所述基于历史交通模式的路径行程时间的方法为:对于每条候选路径,根据设置的交通参数结合候选路径中的路段链,查找匹配的路段链历史交通模式,进一步获得该候选路径的所有路段链的道路通行级别,再根据路段链的道路通行级别获得相应的路段链的车辆平均行驶速度vi,最后计算出每条路段链i的行程时间ti=Li/vi,则基于路段链历史交通模式的路段链行程时间Th1为: Li为路段链i的距离,n为一条候选路径中路段\n链的条数;根据设置的交通参数结合候选路径中的路段链,查找匹配的交叉路口历史延误模式,进一步获得该候选路径的所有路口的延误时间tj,最后计算出所有路口的延误时间Th2为: 则基于历史交通模式(路段链历史交通模式和交叉路口历史延误模式)的\n路径行程时间Th为Th=Th1+Th2。\n[0062] 计算基于默认交通模式的路径行程时间的方法为:对于每条候选路径,根据设置的交通参数结合候选路径中的路段链,查找匹配的默认路段链交通模式,进一步获得该候选路径的所有路段链的道路通行级别,再根据路段链的道路通行级别获得相应的路段链的车辆平均行驶速度v′i,最后计算出每条路段链i的行程时间t′i=Li/v′i,则基于默认路段链交通模式的路段链的行程时间Td1为: Li为路段链i的距离,n为一条候选路径\n中路段链的条数,根据设置的交通参数结合候选路径中的路段链,查找匹配的默认交叉路口延误模式,进一步获得该候选路径的所有路口的延误时间t′j,最后计算出所有路口的延误时间 则基于默认交通模式的路径行程时间Td为:Td=Td1+Td2。\n[0063] 最后计算每条候选路径的预测行程时间T,计算公式为:T=αTh+βTd。\n[0064] S600,所有的候选路径的预测行程时间T都计算完成后,在候选路径中选择一条预测行程时间最短的路径作为推荐路径,该路径的预测行程时间即为最终的路径预测行程时间。\n[0065] 上述进行历史交通模式和默认交通模式的匹配过程中,路段平均行驶速度是指:\n定义每一道路通行级别车辆的平均行驶速度为该通行级别的平均速度范围的中间值,具体为:9级通行级别车辆的平均行驶速度为2.5km/h,8级通行级别车辆的平均行驶速度为8km/h,7级通行级别车辆的平均行驶速度为13.5km/h,6级通行级别车辆的平均行驶速度为\n16km/h,5级通行级别车辆的平均行驶速度为23km/h,4级通行级别车辆的平均行驶速度为\n28km/h,3级通行级别车辆的平均行驶速度为33km/h,2级通行级别车辆的平均行驶速度为\n78km/h,1级通行级别车辆的平均行驶速度为50km/h,0级表示畅通,由于城区速度受限,0级通行级别车辆的平均行驶速度定义为60km/h。\n[0066] 依据上面的方法,如果需要对城市路网中从O点到D点的行程时间进行预测,可列出O点到D点的不同路径,各路径对应着一系列的路段链和不同时段的行程时间总和,在行程时间总和的比较中,选择行程时间最少的一条路径作为最佳路径。此方法不仅考虑了路段的交通流也考虑了不同时刻、季节、气候等因素的影响,因而实际应用效果更佳。\n[0067] 本领域内的技术人员可以对本发明进行改动或变型的设计但不脱离本发明的思想和范围。因此,如果本发明的这些修改和变型属于本发明权利要求及其等同的技术范围之内,则本发明也意图包含这些改动和变型在内。