著录项信息
专利名称 | 用户行为采集系统、方法、母设备和子设备 |
申请号 | CN201410239503.4 | 申请日期 | 2014-05-30 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2014-08-20 | 公开/公告号 | CN103997535A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | H04L29/08 | IPC分类号 | H;0;4;L;2;9;/;0;8查看分类表>
|
申请人 | 百度在线网络技术(北京)有限公司 | 申请人地址 | 北京市海淀区上地十街10号百度大厦三层
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 百度在线网络技术(北京)有限公司 | 当前权利人 | 百度在线网络技术(北京)有限公司 |
发明人 | 詹君 |
代理机构 | 北京清亦华知识产权代理事务所(普通合伙) | 代理人 | 宋合成 |
摘要
本发明提出一种用户行为采集系统、方法、母设备和子设备,其中,用户行为采集系统,包括:至少一个母设备,至少一个母设备用于以第一无线探测方式对用户进行定位,以获取用户的第一定位信息;至少一个子设备组,每个子设备组包括至少一个子设备,且每个子设备组属于一个母设备,每个子设备组中的子设备均与母设备进行通信,且每个子设备组中的子设备用于以第二无线探测方式对用户进行定位以获取用户的第二定位信息,并将用户的第二定位信息发送至所属的母设备;以及服务器,服务器与至少一个母设备相连,服务器用于采集用户的第一定位信息和第二定位信息。本发明的用户行为采集系统,部署范围广,采集精确度高,部署成本低。
1.一种用户行为采集系统,其特征在于,包括:
至少一个母设备,所述至少一个母设备用于以第一无线探测方式对用户进行定位,以获取所述用户的第一定位信息;
至少一个子设备组,每个子设备组包括至少一个子设备,且每个子设备组属于一个母设备,每个子设备组中的子设备均与所述母设备进行通信,且每个所述子设备组中的子设备用于以第二无线探测方式对用户进行定位以获取所述用户的第二定位信息,并将所述用户的第二定位信息发送至所属的母设备,其中,所述母设备和所述子设备组中的子设备通过两种不同的无线探测方式对用户进行定位;以及
服务器,所述服务器与所述至少一个母设备相连,所述服务器用于采集所述用户的第一定位信息和第二定位信息;
其中,所述第一无线探测方式为WIFI探测方式,所述第二无线探测方式为iBeacon蓝牙方式;所述母设备具有蓝牙主动装置,所述子设备具有蓝牙从动装置,所述子设备通过所述蓝牙从动装置广播具有UID的信号,所述母设备检测到广播的所述UID之后,建立与所述子设备的连接;
其中,所述至少一个母设备,还用于以第二无线探测方式对用户进行定位以获取所述用户的第二定位信息;
其中,每个子设备组中的子设备通过蓝牙或WIFI与所属的母设备进行通信。
2.如权利要求1所述的用户行为采集系统,其特征在于,所述母设备还用于接收所述服务器的配置信息,所述配置信息包括属于所述母设备的子设备的UID,以使所述母设备仅接受属于母设备的子设备的UID。
3.如权利要求1所述的用户行为采集系统,其特征在于,所述母设备还用于获取所述子设备的电量及信号强度信息。
4.如权利要求1所述的用户行为采集系统,其特征在于,所述母设备还用于根据所述子设备的信号强度信息获取所述子设备的位置信息,并生成子设备地图。
5.如权利要求1所述的用户行为采集系统,其特征在于,所述子设备包括:
蓝牙低功耗BLE芯片,所述BLE芯片用于通过第二无线探测方式对用户进行定位,并与所属的母设备进行通信;
为所述BLE芯片供电的电池。
6.如权利要求1所述的用户行为采集系统,其特征在于,所述服务器还用于根据所述用户的第一定位信息和第二定位信息生成所述用户的位置信息,并根据所述用户的位置信息分析所述用户的行为信息。
7.如权利要求6所述的用户行为采集系统,其特征在于,所述服务器还用于根据所述用户的行为信息对所述用户进行推送。
8.一种用户行为采集方法,其特征在于,包括:
母设备以第一无线探测方式对用户进行定位,以获取所述用户的第一定位信息;
所述母设备接收属于所述母设备的子设备组发送的所述用户的第二定位信息,其中,所述母设备和所述子设备组中的子设备通过两种不同的无线探测方式对用户进行定位;
所述母设备将所述用户的第一定位信息和第二定位信息发送至服务器;
其中,所述第一无线探测方式为WIFI探测方式,第二无线探测方式为iBeacon蓝牙方式;所述母设备具有蓝牙主动装置,所述子设备具有蓝牙从动装置,所述子设备通过所述蓝牙从动装置广播具有UID的信号,所述母设备检测到广播的所述UID之后,建立与所述子设备的连接;
其中,所述方法还包括:
所述母设备以第二无线探测方式对用户进行定位以获取所述用户的第二定位信息;
其中,所述子设备组中的子设备通过蓝牙或WIFI与所述母设备进行通信。
9.如权利要求8所述的用户行为采集方法,其特征在于,还包括:
所述母设备接收所述服务器的配置信息,所述配置信息包括属于所述母设备的子设备的UID,以使所述母设备仅接受属于母设备的子设备的UID。
10.如权利要求8所述的用户行为采集方法,其特征在于,还包括:
所述母设备获取所述子设备的电量及信号强度信息。
11.如权利要求9所述的用户行为采集方法,其特征在于,还包括:
所述母设备根据所述子设备组中子设备的信号强度信息获取所述子设备的位置信息,并生成子设备地图。
12.一种母设备,其特征在于,包括:
第一探测模块,用于以第一无线探测方式对用户进行定位,以获取所述用户的第一定位信息;
通信模块,用于接收属于所述母设备的子设备组发送的所述用户的第二定位信息,其中,所述母设备和所述子设备组中的子设备通过两种不同的无线探测方式对用户进行定位;
发送模块,用于将所述用户的第一定位信息和第二定位信息发送至服务器;
其中,所述第一无线探测方式为WIFI探测方式,第二无线探测方式为iBeacon蓝牙方式;所述通信模块为蓝牙主动装置,具体用于检测所述子设备通过蓝牙从动装置广播的UID的信号,并于在检测到广播的所述UID之后,建立与所述子设备的连接;
其中,所述母设备还包括:
第二探测模块,用于以第二无线探测方式对用户进行定位以获取所述用户的第二定位信息;
其中,所述通信模块通过蓝牙或WIFI与所述子设备组中的子设备进行通信。
13.如权利要求12所述的母设备,其特征在于,还包括:
接收模块,用于接收所述服务器的配置信息,所述配置信息包括所述子设备组中每个子设备的UID,以使所述通信模块仅接受所述子设备组中的子设备的UID。
14.如权利要求12所述的母设备,其特征在于,还包括:
获取模块,用于获取所述子设备的电量及信号强度信息。
15.如权利要求12所述的母设备,其特征在于,还包括:
生成模块,用于根据所述子设备组中子设备的信号强度信息获取所述子设备的位置信息,并生成子设备地图。
用户行为采集系统、方法、母设备和子设备\n技术领域\n[0001] 本发明涉及位置探测技术领域,特别涉及一种用户行为采集系统、方法、母设备和子设备。\n背景技术\n[0002] 为了能够根据用于的行为为用户提供个性化的服务器,需要对用户的行为进行跟踪、分析,并根据分析结果与用户进行交互。当然,其中最关键的问题就是准确的采集用户的行为。目前,采集用户行为的方法主要有蓝牙Beacon(一种低功耗蓝牙信号)技术以及WIFI(Wireless Fidelity,无线保真)静默探测技术。\n[0003] 但是,蓝牙Beacon技术的可探测范围较小,并且其实现需要依赖于支持蓝牙4.0的智能手机和操作系统。但是目前大部分移动终端,特别是使用Android安卓系统的移动终端不具备BLE(Bluetooth Low Energy,低功耗蓝牙)功能,并且大多数用户会因蓝牙耗电、不安全等原因而不开启蓝牙功能,因此,蓝牙Beacon的用户覆盖度以及适用范围较小。此外,蓝牙Beacon的实现需要通过相应的应用或者SDK(Software Development Kit,软件开发工具包)来激活定位服务,推广部署成本高。\n[0004] 而WIFI静默探测技术虽然不会收到终端设备硬件以及用户使用度的限制,且探测范围广,但是WIFI探测设备收到供电方式以及联网功能的限制,部署比较困难,并且WIFI静默探测技术的定位精度相对蓝牙Beacon较低,难以满足用户行为跟踪需求。列举来说,医院和教育系统的客户,只需要对用户行为进行大范围的跟踪,但是在商场中,除了需要对用户进行大范围跟踪以外,还需要进行精确跟踪,这时候方WIFI静默探测技术定位精度不足,部署困难的毛病就暴露的更加厉害。\n发明内容\n[0005] 本发明旨在至少在一定程度上解决上述技术问题。\n[0006] 为此,本发明的第一个目的在于提出一种用户行为采集系统,该系统,能够高精度的采集更广范围内的用户的行为。\n[0007] 本发明的第二个目的在于提出一种用户行为采集方法。\n[0008] 本发明的第三个目的在于提出一种用户行为采集方法。\n[0009] 本发明的第四个目的在于提出一种母设备。\n[0010] 本发明的第五个目的在于提出一种子设备。\n[0011] 为达上述目的,根据本发明第一方面实施例提出了一种用户行为采集系统,包括:\n至少一个母设备,所述至少一个母设备用于以第一无线探测方式对用户进行定位,以获取所述用户的第一定位信息;至少一个子设备组,所述每个子设备组包括至少一个子设备,且所述每个子设备组属于一个母设备,所述每个子设备组中的子设备均与所述母设备进行通信,且每个所述子设备组中的子设备用于以第二无线探测方式对用户进行定位以获取所述用户的第二定位信息,并将所述用户的第二定位信息发送至所属的母设备;以及服务器,所述服务器与所述至少一个母设备相连,所述服务器用于采集所述用户的第一定位信息和第二定位信息。\n[0012] 本发明实施例的用户行为采集系统,可分别通过母设备和子设备通过两种不同的无线探测方式对用户进行定位,以获取用户的定位信息,并通过母设备将用户的定位信息发送至服务器,具有以下的优点:\n[0013] 1、通过不同探测方式获取用户的定位信息,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到;\n[0014] 2、通过子母设备相结合的系统,可通过在大范围内部署少量具有高灵敏度天线的母设备,从而提供较大范围的用户行为采集服务器,并通过在每个母设备的覆盖范围内部署大量低成本的子设备,除了可部署到更广阔的范围,精确采集用户行为之外,大大节约了部署成本;\n[0015] 3、通过母设备对多个子设备进行统一管理,子设备也可随时升级系统,有效防止子设备的协议被破解的可能。\n[0016] 本发明第二方面实施例提供了一种用户行为采集方法,包括:母设备以第一无线探测方式对用户进行定位,以获取所述用户的第一定位信息;所述母设备接收属于所述母设备的子设备组发送的所述用户的第二定位信息;所述母设备将所述用户的第一定位信息和第二定位信息发送至服务器。\n[0017] 本发明实施例的用户行为采集方法,可分别通过母设备自身以及子设备的两种不同的无线探测方式对用户进行定位,以获取用户的定位信息,并通过母设备将用户的定位信息发送至服务器,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到,且通过母设备对多个子设备进行统一管理,有效防止子设备的协议被破解的可能。\n[0018] 本发明第三方面实施例提供了一种用于本发明第一方面实施例的用户行为采集系统的用户行为采集方法,包括:子设备以第二无线探测方式对用户进行定位以获取所述用户的第二定位信息;所述子设备将所述用户的第二定位信息发送至所属的母设备,以使所述母设备将所述第二定位信息发送至服务器。\n[0019] 本发明实施例的用户行为采集方法,子设备可将自身通过第二探测方式获取的第二定位信息通过母设备发送至服务器,从而使服务器可采集到通过子设备和母设备两种不同无线探测方式获取的用户的定位信息,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到,并且子设备的制作和部署低成本很低,大大节约了部署成本。\n[0020] 本发明第四方面实施例提供了一种母设备,包括:第一探测模块,用于以第一无线探测方式对用户进行定位,以获取所述用户的第一定位信息;通信模块,用于接收子设备组发送的所述用户的第二定位信息;发送模块,用于将所述用户的第一定位信息和第二定位信息发送至服务器。\n[0021] 本发明实施例的母设备,可分别通过母设备自身以及子设备的两种不同的无线探测方式对用户进行定位,以获取用户的定位信息,并通过母设备将用户的定位信息发送至服务器,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到,且通过母设备对多个子设备进行统一管理,有效防止子设备的协议被破解的可能。\n[0022] 本发明第五方面实施例提供了一种子设备,包括:蓝牙低功耗BLE芯片,所述BLE芯片用于通过第二无线探测方式对用户进行定位,并与所属的母设备进行通信;为所述BLE芯片供电的电池。\n[0023] 本发明实施例的子设备,可通过BLE芯片以第二无线探测方式对用户进行定位,并与母设备通信,功耗低,成本低。\n[0024] 本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。\n附图说明\n[0025] 本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:\n[0026] 图1为根据本发明一个实施例的用户行为采集系统的结构示意图;\n[0027] 图2a为根据本发明一个实施例的母设备的产品示意图;\n[0028] 图2b为根据本发明另一个实施例的母设备的产品示意图;\n[0029] 图3为根据本发明一个实施例的用户行为采集方法的流程图;\n[0030] 图4为根据本发明一个具体实施例的用户行为采集方法的流程图;\n[0031] 图5为根据本发明另一个实施例的用户行为采集方法的流程图;\n[0032] 图6为根据本发明一个实施例的母设备的结构示意图;\n[0033] 图7为根据本发明另一个实施例的母设备的结构示意图;\n[0034] 图8为根据本发明又一个实施例的母设备的结构示意图;\n[0035] 图9为根据本发明一个实施例的子设备的结构示意图。\n具体实施方式\n[0036] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。\n[0037] 在本发明的描述中,需要理解的是,术语“至少一个”指一个或多个;术语“多个”指两个或两个以上;术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。\n[0038] 下面参考附图描述根据本发明实施例的用户行为采集系统、方法和设备。\n[0039] 为了能够同时提高用户行为采集跟踪技术中的定位精度以及探测范围,本发明提出了一种用户行为采集系统,包括:至少一个母设备,至少一个母设备用于以第一无线探测方式对用户进行定位,以获取用户的第一定位信息;至少一个子设备组,每个子设备组包括至少一个子设备,且每个子设备组属于一个母设备,每个子设备组中的子设备均与母设备进行通信,且每个子设备组中的子设备用于以第二无线探测方式对用户进行定位以获取用户的第二定位信息,并将用户的第二定位信息发送至所属的母设备;以及服务器,服务器与至少一个母设备相连,服务器用于采集用户的第一定位信息和第二定位信息。\n[0040] 图1为根据本发明一个实施例的用户行为采集系统的结构示意图。如图1所示,根据本发明实施例的用户行为采集系统,包括:至少一个母设备100、至少一个子设备组200和服务器300。\n[0041] 具体地,至少一个母设备100用于以第一无线探测方式对用户进行定位,以获取用户的第一定位信息。其中,第一定位信息为通过第一无线探测方式获取的用户的位置信息。\n在本发明的一个实施例中,第一无线探测方式可为WIFI探测方式。WIFI探测方式为一家名为Euclid Analytics的实境分析公司提出的通过探测支持WIFI功能移动终端发出无线探测请求信号对用户行为进行分析,以获取持有该移动终端的用户的行动轨迹、访问时长、以及访问时间间隔等信息。因此,母设备100在采集到用户持有的移动终端的无线请求信号时,即可获取用户的定位信息。其中,母设备100可支持b/g/n/a/ac等各种标准的WIFI探测设备。\n[0042] 在本发明的另一个实施例中,母设备100还可用于以第二无线探测方式对用户进行定位以获取用户的第二定位信息。其中,第二定位信息为通过第二无线探测方式获取的用户的位置范围。在本发明的一个实施例中,第二无线探测方式可为iBeacon蓝牙方式。\niBeacon蓝牙方式是苹果公司2013年9月发布的移动设备用OS(iOS7)上配备的新功能。其工作方式是,配备有BLE通信功能的设备使用BLE技术向周围发送自己特有的标识信息,以确定接收到该标识信息的移动终端的位置信息。更具体地,母设备100上可配有BLE设备,从而可向周围发送自己的标识信息,当移动终端接收到该标识信息时,即可获取持有该移动终端的用户的定位信息。\n[0043] 在本发明的实施例中,母设备100可通过电池以及交流电源等方式进行供电,如图\n2a和图2b所示,为根据本发明一个实施例的母设备的产品示意图。其中,图2a为根据本发明一个实施例的母设备的产品示意图,A为母设备100用于探测用户行为以及与子设备210、服务器300进行通信的天线,B为母设备100的功能芯片。图2b为根据本发明另一个实施例的母设备的产品示意图,其内部具有为母设备100进行供电的电池,并可通过固定板C将母设备\n100固定在墙体或其他物体上进行部署。\n[0044] 至少一个子设备组200包括至少一个子设备210,且每个子设备组200属于一个母设备100,每个子设备组200中的子设备210均与母设备100进行通信,且每个子设备组200中的子设备210用于以第二无线探测方式对用户进行定位以获取用户的第二定位信息,并将用户的第二定位信息发送至所属的母设备100。其中,每个子设备组200中的子设备210通过蓝牙或WIFI与所属的母设备进行通信。\n[0045] 对于通过WIFI方式进行通信的方法很多,本领域技术人员可参照根据相关技术,本发明实施例中不再说明。\n[0046] 下面为对于通过蓝牙方式进行通信的实施例:\n[0047] 其中,母设备100具有蓝牙主动装置,子设备210具有蓝牙从动装置,子设备210通过蓝牙从动装置广播具有UID(User Identification,用户身份证明)的信号,母设备100检测到广播的UID之后,即可建立与发送该信号的子设备210的连接。具体地,当子设备210第一次开机或者进入配置流程时,会自动广播具有其自身的UID的信号,母设备100可定期扫描检测具有UID的信号,当只母设备100检测子设备210广播的信号时,即可与该子设备210建立连接。如果多个母设备100同时检测到子设备210的信号,则母设备100可从服务器300接受配置信息,其中,配置信息包括属于每个母设备100的子设备210的UID,从而,母设备\n100仅接受属于该母设备100的子设备210的UID,与具有配置信息中的UID的子设备210建立连接,忽略检测到的其他UID。\n[0048] 在本发明的一个实施例中,在母设备100在定期检测广播信号时如果发现有新的子设备210,且该子设备不属于其他母设备,则可建立与该子设备210的连接,并对子设备\n210进行配置,同时修改母设备210对应的配置信息(在配置信息中增加该子设备210的UID记录)。\n[0049] 对于每个母设备100,可定期获取其对应的子设备组200中的子设备210的电量及信号强度信息,从而可根据子设备210的信号强度信息获取子设备210的位置信息,并生成子设备的地图,同时可以根据子设备的电量和信号强度信息判断子设备210的工作状态是否正常。\n[0050] 更具体地,母设备可定期根据获取到的子设备组200中的子设备210的信号强度,并通过一定的算法确定子设备210之间以及每个子设备210与母设备100的相对位置(可精确到米),并进行汇总,生成子设备组200中各个子设备210的地图。在本发明的一个实施例中,母设备100还可将生成的子设备的地图上传至服务器300,以在母设备更新时,从服务器\n300直接下载该地图,无需再次生成。\n[0051] 如果母设备100不能与子设备210进行通信的时间超过预设阈值,且子设备210的电量充足,则可认为子设备的位置发生变化或者出现其他问题(如故障),此时可进行异常提示,以通过人工处理,并根据处理结果对子设备210重新进行配置或者将该子设备210标记为不可用,并对子设备地图进行更新。\n[0052] 在本发明的一个实施例中,子设备可包括蓝牙低功耗BLE芯片和为BLE芯片供电的电池,其中,BLE芯片用于通过第二无线探测方式对用户进行定位,并与所属的母设备进行通信(即可实现蓝牙从动装置的功能)。由于BLE芯片的功耗非常低,因此仅通过电池为其供电,即可使其工作很长时间,非常方便,且便于部署。\n[0053] 服务器300与至少一个母设备100相连,服务器300用于采集用户的第一定位信息和第二定位信息。更具体地,母设备100可将自身探测获取的用户的第一定位信息和/或第二定位信息以及子设备获取的第二定位信息发送至服务器300。其中,母设备100可通过2G网络、3G网络以及WIFI等方式与服务器进行通信。\n[0054] 在本发明的一个实施例中,服务器300还用于根据用户的第一定位信息和第二定位信息生成用户的位置信息,并根据用户的位置信息分析用户的行为信息。更具体地,服务器300可根据不同子设备210以及母设备100获取的用户的定位信息进行综合分析,以得到用户的准确的位置信息。同时可对用户的位置信息随时间的变化进行分析,以得到用户的行为信息,如行动轨迹、在每个地点的停留时间、以及到每个地点的频率等。并且可根据大量用户的行为,分析出热点区域,并对其他用户进行推荐。\n[0055] 另外,服务器300还可结合母设备100上传的子设备地图以及用户的定位信息,将用户的位置信息更加直观的展现在子设备地图上,且更加准确。\n[0056] 在本发明的一个实施例中,服务器300还用于根据用户的行为信息对用户进行推送。例如,如果根据用户的行为信息确定用户进入了一个商场,服务器可向用户的移动终端中发送该商场的店铺信息、每个店铺的折扣信息、经营类型等,随着用户在商场中位置的变化,如进入其中一家店铺,服务器可向该用户的终端发送该店铺和/或周边店铺的折扣卷以及进店积分等信息。\n[0057] 本发明实施例的用户行为采集系统,可分别通过母设备和子设备通过两种不同的无线探测方式对用户进行定位,以获取用户的定位信息,并通过母设备将用户的定位信息发送至服务器,具有以下的优点:\n[0058] 1、通过不同探测方式获取用户的定位信息,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到;\n[0059] 2、通过子母设备相结合的系统,可通过在大范围内部署少量具有高灵敏度天线的母设备,从而提供较大范围的用户行为采集服务器,并通过在每个母设备的覆盖范围内部署大量低成本的子设备,除了可部署到更广阔的范围,精确采集用户行为之外,大大节约了部署成本;\n[0060] 3、通过母设备对多个子设备进行统一管理,子设备也可随时升级系统,有效防止子设备的协议被破解的可能。\n[0061] 为了实现上述实施例,本发明还提出一种用户行为采集方法。\n[0062] 一种用户行为采集方法,包括:母设备以第一无线探测方式对用户进行定位,以获取用户的第一定位信息;母设备接收属于母设备的子设备组发送的用户的第二定位信息;\n母设备将用户的第一定位信息和第二定位信息发送至服务器。\n[0063] 图3为根据本发明一个实施例的用户行为采集方法的流程图。如图3所示,该用户行为采集方法,包括:\n[0064] S301,母设备以第一无线探测方式对用户进行定位,以获取用户的第一定位信息。\n[0065] 其中,第一定位信息为通过第一无线探测方式获取的用户的位置信息。在本发明的一个实施例中,第一无线探测方式可为WIFI探测方式。WIFI探测方式为一家名为Euclid Analytics的实境分析公司提出的通过探测支持WIFI功能移动终端发出无线探测请求信号对用户行为进行分析,以获取持有该移动终端的用户的行动轨迹、访问时长、以及访问时间间隔等信息。因此,母设备在采集到用户持有的移动终端的无线请求信号时,即可获取用户的定位信息。其中,母设备可支持b/g/n/a/ac等各种标准的WIFI探测设备。\n[0066] S302,母设备接收属于母设备的子设备组发送的用户的第二定位信息。\n[0067] 在本发明的实施例中,子设备组中的子设备可通过蓝牙或WIFI与所属的母设备进行通信。对于通过WIFI方式进行通信的方法很多,本领域技术人员可参照根据相关技术,本发明实施例中不再说明。\n[0068] 在本发明的一个实施例中,母设备具有蓝牙主动装置,子设备具有蓝牙从动装置,母设备通过蓝牙与子设备进行通信的过程如下:子设备通过蓝牙从动装置广播具有UID的信号,母设备检测到广播的UID之后,即可建立与发送该信号的子设备的连接。具体地,当子设备第一次开机或者进入配置流程时,会自动广播具有其自身的UID的信号,母设备可定期扫描检测具有UID的信号,当只母设备检测子设备广播的信号时,即可与该子设备建立连接。如果多个母设备同时检测到子设备的信号,则还包括母设备可从服务器接受配置信息的步骤,其中,配置信息包括属于每个母设备的子设备的UID,从而,母设备仅接受属于该母设备的子设备的UID,与具有配置信息中的UID的子设备建立连接,忽略检测到的其他UID。\n[0069] 在本发明的一个实施例中,在母设备在定期检测广播信号时如果发现有新的子设备,且该子设备不属于其他母设备,则可建立与该子设备的连接,并对子设备进行配置,同时修改母设备对应的配置信息(在配置信息中增加该子设备的UID记录)。\n[0070] 如果母设备不能与子设备进行通信的时间超过预设阈值,且子设备的电量充足,则可认为子设备的位置发生变化或者出现其他问题(如故障),此时可进行异常提示,以通过人工处理,并根据处理结果对子设备重新进行配置或者将该子设备标记为不可用,并对子设备地图进行更新。\n[0071] S303,母设备将用户的第一定位信息和第二定位信息发送至服务器。\n[0072] 具体地,母设备可将自身探测获取的用户的第一定位信息和/或第二定位信息以及子设备获取的第二定位信息发送至服务器。其中,母设备可通过2G网络、3G网络以及WIFI等方式与服务器进行通信。\n[0073] 本发明实施例的用户行为采集方法,可分别通过母设备自身以及子设备的两种不同的无线探测方式对用户进行定位,以获取用户的定位信息,并通过母设备将用户的定位信息发送至服务器,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到,且通过母设备对多个子设备进行统一管理,有效防止子设备的协议被破解的可能。\n[0074] 在本发明的另一个实施例中,还可包括母设备以第二无线探测方式对用户进行定位以获取用户的第二定位信息的步骤,从而可通过更多种方式对用户进行定位,得到的用户的定位信息更加准确。其中,第二定位信息为通过第二无线探测方式获取的用户的位置范围。在本发明的一个实施例中,第二无线探测方式可为iBeacon蓝牙方式。iBeacon蓝牙方式是苹果公司2013年9月发布的移动设备用OS(iOS7)上配备的新功能。其工作方式是,配备有BLE通信功能的设备使用BLE技术向周围发送自己特有的标识信息,以确定接收到该标识信息的移动终端的位置信息。更具体地,母设备上可配有BLE设备,从而可向周围发送自己的标识信息,当移动终端接收到该标识信息时,即可获取持有该移动终端的用户的定位信息。\n[0075] 图4为根据本发明一个具体实施例的用户行为采集方法的流程图。在本发明的实施例中,母设备具有蓝牙主动装置,子设备具有蓝牙从动装置,其中,子设备可通过蓝牙从动装置广播具有UID的信号,如图4所示,该用户行为采集方法,包括:\n[0076] S401,母设备以第一无线探测方式对用户进行定位,以获取用户的第一定位信息。\n[0077] 其中,第一定位信息为通过第一无线探测方式获取的用户的位置信息。在本发明的一个实施例中,第一无线探测方式可为WIFI探测方式。WIFI探测方式为一家名为Euclid Analytics的实境分析公司提出的通过探测支持WIFI功能移动终端发出无线探测请求信号对用户行为进行分析,以获取持有该移动终端的用户的行动轨迹、访问时长、以及访问时间间隔等信息。因此,母设备在采集到用户持有的移动终端的无线请求信号时,即可获取用户的定位信息。其中,母设备可支持b/g/n/a/ac等各种标准的WIFI探测设备。\n[0078] S402,母设备检测到广播的UID之后,建立与广播该UID的子设备的连接。\n[0079] 在本发明的实施例中,步骤S302可在步骤S301之前也可在步骤S302之后。\n[0080] S403,母设备获取子设备的电量及信号强度信息。\n[0081] S404,母设备根据子设备组中子设备的信号强度获取子设备的位置信息,并生成子设备地图。\n[0082] 在本发明的一个实施例中,母设备还可以根据子设备的电量和信号强度信息判断子设备的工作状态是否正常。具体地,母设备可定期根据获取到的子设备组中的子设备的信号强度,并通过一定的算法确定子设备之间以及每个子设备与母设备的相对位置(可精确到米),并进行汇总,生成子设备组中各个子设备的地图。如果母设备不能与子设备进行通信的时间超过预设阈值,且子设备的电量充足,则可认为子设备的位置发生变化或者出现其他问题(如故障),此时可进行异常提示,以通过人工处理,并根据处理结果对子设备重新进行配置或者将该子设备标记为不可用,并对子设备地图进行更新。\n[0083] S405,母设备接收属于母设备的子设备组发送的用户的第二定位信息。\n[0084] 在本发明的实施例中,步骤S403和S404可在步骤S405之前,也可在步骤S405之后。\n[0085] S406,母设备将用户的第一定位信息和第二定位信息发送至服务器。\n[0086] 具体地,母设备可将自身探测获取的用户的第一定位信息和/或第二定位信息以及子设备获取的第二定位信息发送至服务器。其中,母设备可通过2G网络、3G网络以及WIFI等方式与服务器进行通信。\n[0087] 在本发明的一个实施例中,服务器接收到用户的第一定位信息和第二定位信息后,可据此生成用户的位置信息,并根据用户的位置信息分析用户的行为信息。具体地,服务器可根据不同子设备以及母设备获取的用户的定位信息进行综合分析,以得到用户的准确的位置信息。同时可对用户的位置信息随时间的变化进行分析,以得到用户的行为信息,如行动轨迹、在每个地点的停留时间、以及到每个地点的频率等。并且可根据大量用户的行为,分析出热点区域,并对其他用户进行推荐。\n[0088] 另外,服务器还可接收母设备上传的子设备地图,进而可结合子设备地图以及用户的定位信息,将用户的位置信息更加直观的展现在子设备地图上,且更加准确。\n[0089] 在本发明的一个实施例中,服务器还可根据用户的行为信息对用户进行推送。例如,如果根据用户的行为信息确定用户进入了一个商场,服务器可向用户的移动终端中发送该商场的店铺信息、每个店铺的折扣信息、经营类型等,随着用户在商场中位置的变化,如进入其中一家店铺,服务器可向该用户的终端发送该店铺和/或周边店铺的折扣卷以及进店积分等信息。\n[0090] 本发明实施例的用户行为采集方法,母设备可通过蓝牙方式与子设备建立连接,并可根据检测子设备的信号强度和电量,进而生成子设备地图,准确的对子设备进行管理,从而能够更准确的获取用户的定位信息和用户的行为。\n[0091] 为了实现上述实施例,本发明还提出另一种用户行为采集方法。\n[0092] 一种用户行为采集方法,包括:子设备以第二无线探测方式对用户进行定位以获取用户的第二定位信息;子设备将用户的第二定位信息发送至所属的母设备,以使母设备将第二定位信息发送至服务器。\n[0093] 图5为根据本发明另一个实施例的用户行为采集方法的流程图。如图5所示,该用户行为采集方法,包括:\n[0094] S501,子设备以第二无线探测方式对用户进行定位以获取用户的第二定位信息。\n[0095] 其中,第二定位信息为通过第二无线探测方式获取的用户的位置范围。在本发明的一个实施例中,第二无线探测方式可为iBeacon蓝牙方式。iBeacon蓝牙方式是苹果公司\n2013年9月发布的移动设备用OS(iOS7)上配备的新功能。其工作方式是,配备有BLE通信功能的设备使用BLE技术向周围发送自己特有的标识信息,以确定接收到该标识信息的移动终端的位置信息。更具体地,子设备上可配有BLE设备,从而可向周围发送自己的标识信息,当移动终端接收到该标识信息时,即可获取持有该移动终端的用户的定位信息。\n[0096] S502,子设备将用户的第二定位信息发送至所属的母设备,以使母设备将第二定位信息发送至服务器。\n[0097] 在本发明的实施例中,子设备可通过蓝牙或WIFI与母设备进行通信。对于通过WIFI方式进行通信的方法很多,本领域技术人员可参照根据相关技术,本发明实施例中不再说明。\n[0098] 在本发明的一个实施例中,母设备具有蓝牙主动装置,子设备具有蓝牙从动装置,母设备与子设备通过蓝牙进行通信的过程如下:子设备通过蓝牙从动装置广播具有UID的信号,母设备检测到广播的UID之后,即可建立与发送该信号的子设备的连接。具体地,当子设备第一次开机或者进入配置流程时,会自动广播具有其自身的UID的信号,母设备可定期扫描检测具有UID的信号,当只母设备检测子设备广播的信号时,即可与该子设备建立连接。如果多个母设备同时检测到子设备的信号,则还包括母设备可从服务器接受配置信息的步骤,其中,配置信息包括属于每个母设备的子设备的UID,从而,母设备仅接受属于该母设备的子设备的UID,与具有配置信息中的UID的子设备建立连接,忽略检测到的其他UID。\n[0099] 本发明实施例的用户行为采集方法,子设备可将自身通过第二探测方式获取的第二定位信息通过母设备发送至服务器,从而使服务器可采集到通过子设备和母设备两种不同无线探测方式获取的用户的定位信息,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到,并且子设备的制作和部署低成本很低,大大节约了部署成本。\n[0100] 为了实现上述实施例,本发明还提出一种母设备。\n[0101] 一种母设备,包括:第一探测模块,用于以第一无线探测方式对用户进行定位,以获取用户的第一定位信息;通信模块,用于接收子设备组发送的用户的第二定位信息;发送模块,用于将用户的第一定位信息和第二定位信息发送至服务器。\n[0102] 图6为根据本发明一个实施例的母设备的结构示意图。\n[0103] 如图6所示,根据本发明实施例的母设备,包括:第一探测模块110、通信模块120和发送模块130。\n[0104] 具体地,第一探测模块110用于以第一无线探测方式对用户进行定位,以获取用户的第一定位信息。其中,第一定位信息为通过第一无线探测方式获取的用户的位置信息。在本发明的一个实施例中,第一无线探测方式可为WIFI探测方式。WIFI探测方式为一家名为Euclid Analytics的实境分析公司提出的通过探测支持WIFI功能移动终端发出无线探测请求信号对用户行为进行分析,以获取持有该移动终端的用户的行动轨迹、访问时长、以及访问时间间隔等信息。因此,第一探测模块110在采集到用户持有的移动终端的无线请求信号时,即可获取用户的定位信息。其中,第一探测模块110可支持b/g/n/a/ac等各种标准的WIFI探测设备。\n[0105] 通信模块120用于接收子设备组发送的用户的第二定位信息。通信模块120通过蓝牙或WIFI与子设备组中的子设备进行通信。\n[0106] 在本发明的实施例中,子设备组中的子设备可通过蓝牙或WIFI与所属的母设备进行通信。对于通过WIFI方式进行通信的方法很多,本领域技术人员可参照根据相关技术,本发明实施例中不再说明。\n[0107] 在本发明的一个实施例中,通信模块120可为蓝牙主动装置,子设备具有蓝牙从动装置,通信模块120具体用于检测子设备通过蓝牙从动装置广播的UID的信号,并于在检测到广播的UID之后,建立与子设备的连接。更具体地,当子设备第一次开机或者进入配置流程时,会自动广播具有其自身的UID的信号,通信模块120可定期扫描检测具有UID的信号,当只通信模块120检测子设备广播的信号时,即可与该子设备建立连接。\n[0108] 在本发明的一个实施例中,在通信模块120在定期检测广播信号时如果发现有新的子设备,且该子设备不属于其他母设备,则可建立与该子设备的连接,并对子设备进行配置,同时修改母设备对应的配置信息(在配置信息中增加该子设备的UID记录)。\n[0109] 如果通信模块120不能与子设备进行通信的时间超过预设阈值,且子设备的电量充足,则可认为子设备的位置发生变化或者出现其他问题(如故障),此时可进行异常提示,以通过人工处理,并根据处理结果对子设备重新进行配置或者将该子设备标记为不可用,并对子设备地图进行更新。\n[0110] 发送模块130用于将用户的第一定位信息和第二定位信息发送至服务器。更具体地,发送模块130可将自身探测获取的用户的第一定位信息和/或第二定位信息以及子设备获取的第二定位信息发送至服务器。其中,发送模块130可通过2G网络、3G网络以及WIFI等方式与服务器进行通信。\n[0111] 本发明实施例的母设备,可分别通过母设备自身以及子设备的两种不同的无线探测方式对用户进行定位,以获取用户的定位信息,并通过母设备将用户的定位信息发送至服务器,可结合两种不同无线探测方式的优点,能够更加准确的采集用户的行为,并且可探测到配备不同无线传输设备的终端同时满足了覆盖范围广、探测精确度高的需求,因此大部分终端用户的行为都可被准确的采集到,且通过母设备对多个子设备进行统一管理,有效防止子设备的协议被破解的可能。\n[0112] 图7为根据本发明另一个实施例的母设备的结构示意图。如图7所示,该母设备,包括:第一探测模块110、通信模块120、发送模块130和第二探测模块140。\n[0113] 具体地,第二探测模块140用于以第二无线探测方式对用户进行定位以获取用户的第二定位信息。其中,第二定位信息为通过第二无线探测方式获取的用户的位置范围。在本发明的一个实施例中,第二无线探测方式可为iBeacon蓝牙方式。iBeacon蓝牙方式是苹果公司2013年9月发布的移动设备用OS(iOS7)上配备的新功能。其工作方式是,配备有BLE通信功能的设备使用BLE技术向周围发送自己特有的标识信息,以确定接收到该标识信息的移动终端的位置信息。更具体地,第二探测模块140可为BLE设备,从而可向周围发送自己的标识信息,当移动终端接收到该标识信息时,即可获取持有该移动终端的用户的定位信息。\n[0114] 本发明实施例的母设备,可通过两种不同方式获取用户的定位信息,因而可可探测到配备不同无线传输设备的终端,可采集到大部分终端用户的行为,适用范围更广。\n[0115] 图8为根据本发明又一个实施例的母设备的结构示意图。如图8所示,该母设备,包括:第一探测模块110、通信模块120、发送模块130、第二探测模块140、接收模块150、获取模块160和生成模块170。\n[0116] 具体地,接收模块150用于接收服务器的配置信息,配置信息包括子设备组中每个子设备的UID,以使通信模块仅接受子设备组中的子设备的UID。从而,通信模块120仅接受属于该母设备的子设备的UID,与具有配置信息中的UID的子设备建立连接,忽略检测到的其他UID。\n[0117] 获取模块160用于获取子设备的电量及信号强度信息。\n[0118] 生成模块170用于根据子设备组中子设备的信号强度获取子设备的位置信息,并生成子设备地图。在本发明的一个实施例中,生成模块180还可以根据子设备的电量和信号强度信息判断子设备的工作状态是否正常。具体地,获取模块170可定期根据获取到的子设备组中的子设备的信号强度,生成模块180可通过一定的算法确定子设备之间以及每个子设备与母设备的相对位置(可精确到米),并进行汇总,生成子设备组中各个子设备的地图。\n如果通信模块120不能与子设备进行通信的时间超过预设阈值,且子设备的电量充足,则可认为子设备的位置发生变化或者出现其他问题(如故障),此时可进行异常提示,以通过人工处理,并根据处理结果对子设备重新进行配置或者将该子设备标记为不可用,并对子设备地图进行更新。\n[0119] 本发明实施例的母设备,可根据配置信息确定可进行通信的子设备,并可根据检测子设备的信号强度和电量,进而生成子设备地图,准确的对子设备进行管理,从而能够更准确的获取用户的定位信息和用户的行为。\n[0120] 为了实现上述实施例,本发明还提出一种子设备。\n[0121] 一种子设备,包括:蓝牙低功耗BLE芯片,BLE芯片用于通过第二无线探测方式对用户进行定位,并与所属的母设备进行通信;为BLE芯片供电的电池。\n[0122] 图9为根据本发明一个实施例的子设备的结构示意图。如图9所示,该子设备,包括:蓝牙低功耗BLE芯片211和电池212。\n[0123] 具体地,蓝牙低功耗BLE芯片211用于通过第二无线探测方式对用户进行定位,并与所属的母设备进行通信。在本发明的一个实施例中,第二无线探测方式为iBeacon蓝牙方式。iBeacon蓝牙方式是苹果公司2013年9月发布的移动设备用OS(iOS7)上配备的新功能。\n其工作方式是,配备有BLE通信功能的设备使用BLE技术向周围发送自己特有的标识信息,以确定接收到该标识信息的移动终端的位置信息。\n[0124] 更具体地,蓝牙低功耗BLE芯片211可向周围发送自己的标识信息,当移动终端接收到该标识信息时,即可获取持有该移动终端的用户的定位信息。也可根据相同原理与母设备进行通信。蓝牙低功耗BLE芯片具体用于广播具有UID的信号,并在母设备中的蓝牙主动装置检测到广播的UID之后,建立与母设备的连接。\n[0125] 电池212用于为BLE芯片供电。\n[0126] 本发明实施例的子设备,可通过BLE芯片以第二无线探测方式对用户进行定位,并与母设备通信,功耗低,成本低。\n[0127] 在本发明另一个实施例中,子设备还可包括WIFI芯片213(图中未示出),具体地,WIFI芯片213用于与母设备进行通信。电池212还用于为WIFI芯片供电。子设备可通过多种通信方式可以使数据的传输更加稳定,且可并行传输,效果更高。\n[0128] 流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。\n[0129] 在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。\n[0130] 应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。\n[0131] 本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。\n[0132] 此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。\n[0133] 上述提到的存储介质可以是只读存储器,磁盘或光盘等。\n[0134] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。\n[0135] 尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同限定。
法律信息
- 2018-06-05
- 2014-09-17
实质审查的生效
IPC(主分类): H04L 29/08
专利申请号: 201410239503.4
申请日: 2014.05.30
- 2014-08-20
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2003-10-22
|
2001-02-07
| | |
2
| |
2008-02-27
|
2006-08-25
| | |
3
| |
2008-11-19
|
2008-07-08
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |