1.一种可穿戴电子设备,所述可穿戴电子设备能够响应于用户与所述可穿戴电子设备的交互或者来自所述可穿戴电子设备的传感器的信号而在多个功率模式之间切换,所述可穿戴电子设备包括:
处理器;以及
向所述处理器提供输入的传感器系统,所述传感器系统包括第一传感器和第二传感器,所述第一传感器是高功率传感器,所述高功率传感器在操作时比所述第二传感器消耗更大量的功率,所述第二传感器是低功率传感器;
其中所述处理器被配置成以其中两个传感器都是可操作的高功率模式操作以及以其中所述低功率传感器是可操作的而所述高功率传感器是不可操作的低功率模式操作;
其中,在所述高功率模式下,所述处理器被配置为基于来自所述高功率传感器的第一数据计算针对第一时间段的关于用户的生活方式度量;以及
其中,在所述低功率模式下,所述处理器被配置为基于以下各项来计算针对第二时间段的所述生活方式度量:
来自所述低功率传感器的第二数据;以及
所述第一数据和/或所述第一数据的导出数。
2.如权利要求1所述的可穿戴电子设备,其特征在于,进一步包括可佩戴在所述用户的手腕上的带。
3.如权利要求1所述的可穿戴电子设备,其特征在于,所述高功率传感器是全球定位系统(GPS)接收器,而所述低功率传感器是加速计。
4.如权利要求3所述的可穿戴电子设备,其特征在于,所述生活方式度量是所述用户所行进的距离,而所述第一数据的所述导出数是所述用户的步幅长度。
5.如权利要求4所述的可穿戴电子设备,其特征在于,所述处理器被进一步配置为将所述用户行进的所述距离与先前总的距离相加以便获得当前总的距离。
6.如权利要求4所述的可穿戴电子设备,其特征在于,所述步幅长度是多个步幅长度中的一个,每个相应的步幅长度是为所述用户的相关联的步态计算的。
7.如权利要求1所述的可穿戴电子设备,其特征在于,所述高功率传感器是心率传感器,而所述低功率传感器是加速计。
8.如权利要求7所述的可穿戴电子设备,其特征在于,所述生活方式度量是卡路里消耗,并且所述第一数据的导出数包括第一导出数和第二导出数,所述第一导出数是安静时心率,而所述第二导出数是恢复率。
9.如权利要求8所述的可穿戴电子设备,其特征在于,所述处理器被进一步配置为通过以下来计算所述安静时心率:
在所述用户睡眠时收集所述第一数据;
过滤出心率范围外的第一数据;以及
基于经过滤的第一数据来计算所述安静时心率。
10.如权利要求8所述的可穿戴电子设备,其特征在于,所述处理器被进一步配置成以远程模式操作,其中所述高功率传感器是远程设备中的远程高功率传感器,其中所述处理器被配置为:
从所述远程高功率传感器接收远程数据;以及
基于所述远程数据来计算所述生活方式度量。
11.一种利用可穿戴电子设备估计生活方式度量的方法,所述可穿戴电子设备能够响应于用户与所述可穿戴电子设备的交互或者来自所述可穿戴电子设备的传感器的信号而在多个功率模式之间切换,所述方法包括:
以高功率模式操作,其中第一传感器和第二传感器是可操作的,所述第一传感器是高功率传感器,所述高功率传感器在操作时比所述第二传感器消耗更大量的功率,所述第二传感器是低功率传感器;
在所述高功率模式下,基于来自所述高功率传感器的第一数据来计算针对第一时间段的关于用户的生活方式度量;
以低功率模式操作,其中所述高功率传感器是不可操作的而所述低功率传感器是可操作的;以及
在所述低功率模式下,基于以下各项来计算针对第二时间段的所述生活方式度量:
来自所述低功率传感器的第二数据;以及
所述第一数据和/或所述第一数据的导出数。
12.如权利要求11所述的方法,其特征在于,所述可穿戴电子设备进一步包括可佩戴在所述用户的手腕上的带。
13.如权利要求11所述的方法,其特征在于,所述高功率传感器是全球定位系统(GPS)接收器,而所述低功率传感器是加速计。
14.如权利要求13所述的方法,其特征在于,所述生活方式度量是所述用户所行进的距离,而所述第一数据的所述导出数是所述用户的步幅长度。
15.如权利要求14所述的方法,其特征在于,进一步包括将所述用户行进的距离与先前总的距离相加以便获得当前总的距离。
16.如权利要求14所述的方法,其特征在于,所述步幅长度是多个步幅长度中的一个,每个相应的步幅长度是为所述用户的相关联的步态计算的。
17.如权利要求11所述的方法,其特征在于,所述高功率传感器是心率传感器,而所述低功率传感器是加速计。
18.如权利要求17所述的方法,其特征在于,所述生活方式度量是卡路里消耗,并且所述第一数据的导出数包括第一导出数和第二导出数,所述第一导出数是安静时心率,而所述第二导出数是恢复率。
19.如权利要求18所述的方法,其特征在于,进一步包括通过以下各项计算安静时心率:
在所述用户睡眠时收集所述第一数据;
过滤出心率范围外的第一数据;以及
基于经过滤的第一数据来计算所述安静时心率。
20.一种可穿戴电子设备,所述可穿戴电子设备能够响应于用户与所述可穿戴电子设备的交互或者来自所述可穿戴电子设备的传感器的信号而在多个功率模式之间切换,所述可穿戴电子设备包括:
处理器;
向所述处理器提供输入的传感器系统,所述传感器系统包括第一传感器和第二传感器,所述第一传感器是高功率传感器,所述高功率传感器在操作时比所述第二传感器消耗更大量的功率,所述第二传感器是低功率传感器,其中所述高功率传感器是全球定位系统(GPS)接收器,而所述低功率传感器是加速计;以及
可佩戴在用户手腕上的带;
其中所述处理器被配置成以其中两个传感器都是可操作的高功率模式操作以及以其中所述低功率传感器是可操作的而所述高功率传感器是不可操作的低功率模式操作;其中在所述高功率模式下,所述处理器被配置为基于来自所述高功率传感器的第一数据计算针对第一时间段的关于所述用户的生活方式度量;以及
在所述低功率模式下,所述处理器被配置为基于以下各项来计算针对第二时间段的所述生活方式度量:
来自所述低功率传感器的第二数据;以及
所述第一数据和/或所述第一数据的导出数。
可穿戴电子设备以及估计生活方式度量的方法\n[0001] 附图简述\n[0002] 图1A和1B示出了以可穿戴电子设备形式的示例传感及逻辑系统。\n[0003] 图2A和2B示出了在高功率模式和低功率模式下的可穿戴电子设备的生活方式监视程序的操作。\n[0004] 图3是利用可穿戴电子设备来估计生活方式度量的方法的流程图。\n[0005] 图4示出了传感及逻辑系统的简化示意图。\n[0006] 详细描述\n[0007] 在对健康生活方式的追求中,许多人可能发现跟踪诸如卡路里消耗、行进的距离、水合水平等各种生活方式度量是有益的。这通常可涉及收集数据的传感器和用于基于传感器数据计算生活方式度量的估计的设备。生活方式度量可以被连续地跟踪或仅在诸锻炼期间之类的短时间内被跟踪。虽然这样的生活方式度量向用户提供了强大的信息,但是将传感器配备给人体以便跟踪这样的生活方式度量存在着许多挑战。一个这样的挑战是操作传感器以便测量生活方式度量消耗功率并可能缩短电池寿命。\n[0008] 利用可穿戴电子设备来估计生活方式度量的系统可包括可穿戴电子设备,该可穿戴电子设备包括处理器和向处理器提供输入的传感器系统。传感器系统可包括高功率传感器,该高功率传感器在操作时比低功率传感器消耗更大量的功率。处理器可以被配置成以其中两个传感器都是可操作的高功率模式操作和其中低功率传感器是可操作的而高功率传感器是不可操作的低功率模式操作。在高功率模式下,处理器可被配置为基于来自高功率传感器的第一数据计算针对第一时间段的关于用户的生活方式度量。在低功率模式下,处理器可被配置为基于来自低功率传感器的第二数据和第一数据和/或第一数据的导出数来计算针对第二时间段的生活方式度量。\n[0009] 图1A和1B示出了可穿戴电子设备10形式的示例传感及逻辑系统的各个方面。所示的设备是带状的并且可被戴在手腕上。设备10包括连接欠弯曲区域14的至少四个弯曲区域\n12。在一些示例中,设备10的弯曲区域可以是弹性体的。紧固部件16A和16B被布置在设备的两端。弯曲区域和紧固部件使该设备能够被闭合成环并且被佩戴在用户的手腕上。在其他实现中,更加伸长的带状可穿戴电子设备可被穿戴在用户的二头肌、腰、胸、踝、腿、头或身体其他部分上。例如,设备可采取眼镜、头带、袖标、护踝带、胸带的形式。在另一实现中,该设备可以是要被植入到组织中的植入式设备。\n[0010] 可穿戴电子设备10包括集成在区域14中的各种功能组件。具体地,该电子设备包括计算系统18、显示器20、扬声器22、通信套件24以及各种传感器。这些组件从一个或多个能量存储单元26中汲取能量。电池(例如锂离子电池)是适合该目的的一种类型的能量存储单元。替代的能量存储单元的示例包括超级以及究极电容器。如附图所示,在佩戴于用户手腕上的设备中,该能量存储单元可被弯曲以适合手腕。\n[0011] 一般而言,能量存储单元26可以是可替换的和/或可再充电的。在一些示例中,再充电能量可通过通用串行总线(USB)端口30提供,该端口包括磁性锁来可释放地固定互补的USB连接器。在其他示例中,该能量存储单元可通过无线感应或环境光充电来再充电。在又一些其他示例中,该可穿戴电子设备可包括机电部件以通过用户偶然的或有意的身体运动对能量存储单元充电。例如,电池或电容器可通过集成进设备10中的机电发电机来被充电。该发电机可被机械电枢驱动,当用户移动并且穿戴设备10时该机械电枢转动。\n[0012] 在可穿戴电子设备10中,计算系统18位于显示器20之下并且可操作地耦合到该显示器,以及扬声器22、通信套件24和各种传感器。该计算系统包括数据存储机27来保持数据和指令以及逻辑机28来执行指令,参考图4进一步描述该计算系统的各个方面。\n[0013] 显示器20可以是任何合适类型的显示器。在一些配置中,可使用轻薄、低功耗发光二极管(LED)阵列或液晶显示(LCD)阵列。在一些实现中,LCD阵列可从背后照亮。在其他实现中,反射式LCD阵列(例如,硅上的液晶,LCOS阵列)可经由环境光从正面照亮。弯曲显示器也可被使用。此外,AMOLED或量子点显示器可被使用。\n[0014] 通信套件24可包括任何适当的有线或无线通信部件。在图1A和1B中,该通信套件包括USB端口30,其可被用于在可穿戴电子设备10和其他计算机系统之间交换数据以及提供再充电电能。该通信部件可进一步包括双向蓝牙、Wi-Fi、蜂窝、近场通讯和/或其他无线电设备。在一些实现中,该通信套件可包括额外的针对光通信、视距(例如,红外)通信的收发机。\n[0015] 在可穿戴电子设备10中,触摸屏传感器32与显示器20耦合并且被配置成接收来自用户的触摸输入。该触摸屏可以是电阻式、电容式或基于光学的。按钮传感器可被用于探测可包括摇臂的按钮34的状态。来自按钮传感器的输入可被用于执行主页键或开关特征、控制音频音量、打开或关闭话筒等。\n[0016] 图1A和1B示出了可穿戴电子设备10的各种其他传感器。这样的传感器包括话筒\n36、可见光传感器38、紫外线传感器40、以及环境温度传感器42。话筒向计算系统18提供可被用于测量环境声级或接收来自穿戴者的语音命令的输入。来自可见光传感器、紫外线传感器和环境温度传感器的输入可被用于评估穿戴者所处环境的各方面——即温度、整体照明水平以及该穿戴者在室内或在室外。\n[0017] 图1A和1B示出了当可穿戴电子设备10被穿戴时接触穿戴者的皮肤的一对接触传感器模块44A和44B。接触传感器模块可包括独立的或协作的传感器元件来提供多个传感功能。例如,接触传感器模块可提供测量用户的皮肤的电阻和/或电容的电阻和/或电容传感功能。例如,计算系统18可使用此输入来评估该设备是否被穿戴。在一些实现中,该传感功能可被用于确定可穿戴电子设备正被多紧密地穿戴着。在所示的配置中,两个接触传感器模块之间的间隔提供用于皮肤阻抗的更精确的测量的相对较长的电气路径长度。在一些示例中,接触传感器模块也同样提供用户的皮肤温度的测量。在所示配置中的被布置在接触传感器模块44A内部的是光学脉搏率传感器模块46。光学脉搏率传感器可包括LED发射器和匹配的光电二极管以便检测通过皮肤中毛细血管的血流并从而提供穿戴者的脉搏率的测量。\n[0018] 可穿戴电子设备10可同样包括诸如加速计48、陀螺仪50、以及磁力计51之类的运动传感部件。该加速计和陀螺仪可提供沿三条正交轴的惯性和/或旋转速率数据以及关于三条轴的旋转数据,作为结合的六个自由度。例如,该传感数据可被用于提供步数计/卡路里计数功能。来自加速计和陀螺仪的数据可与来自磁力计的地磁数据结合以便进一步定义惯性和按照地理方位的旋转数据。该可穿戴电子设备可同样包括全球定位系统(GPS)接收机52来确定穿戴者的地理位置和/或速度。在一些配置中,GPS接收机的天线可以是相对柔性的并且延伸到弯曲区域12。\n[0019] 计算系统18经由本文所述的传感功能被配置成获取关于可穿戴电子设备10的穿戴者的各种形式的信息。必须怀着对穿戴者的隐私的最大的尊敬来获取及使用这样的信息。因此,传感功能可在穿戴者的选择参与的约束下被实施。在其中个人数据在设备上被收集并且为了处理而传输至远程系统的实现中,该数据可以是匿名化的。在其他示例中,个人数据可被限于可穿戴电子设备,并且只有非个人的汇总数据传输至远程系统。\n[0020] 图2A和2B分别示出了在高功率模式和低功率模式下的可穿戴电子设备10的生活方式监视程序61的操作。可穿戴电子设备10可包括例如逻辑机28的处理器60和经由生活方式监视程序61向处理器60提供输入的传感器系统。传感器系统可以是下面参照图4描述的传感器套件412,并且可以至少包括例如上述各种其他传感器的第一传感器和第二传感器。\n第一传感器可以是高功率传感器62,其在操作时比第二传感器消耗更大量的功率,该第二传感器可以是低功率传感器64。\n[0021] 处理器60可被配置成以高功率模式和低功率模式操作生活方式监视程序61,在高功率模式中传感器62和64两者是可操作的,并且在低功率模式中低功率传感器64是可操作的而高功率传感器62是不可操作的。因此,在低功率传感器64被连续操作的同时,高功率传感器62可以是间歇地可用的。因为可穿戴电子设备10的其他传感器和组件可能正在一个或两个模式期间运行,所以整个设备的各模式之间的功率差异可能不同于高功率传感器62和低功率传感器64之间的功率差异。此外,不管高功率传感器62和低功率传感器64的相对功率消耗,在高功率模式中可以消耗比在低功率模式中更多的功率,因为除了高功率传感器\n62,在低功率模式期间操作的相同传感器也可在高功率模式期间操作,包括低功率传感器\n64。\n[0022] 处理器60可响应于来自传感器的信号或各种其他原因在各模式之间进行切换。例如,如果高功率传感器62没有正确地感测或在没有正确地感测之后返回到适当的操作,则模式可能被切换。模式还可以被手动切换,例如通过用户与GUI或按压按钮34交互。作为一个示例,用户可能希望开始锻炼,并比该天中用户相对不活动的其余时间更紧密地跟踪一个或多个生活方式度量。\n[0023] 在图2A所示的高功率模式中,处理器60可被配置成执行生活方式监视程序61以便基于来自高功率传感器62的第一数据68来计算针对第一时间段的关于用户的生活方式度量66。第一数据68可被用于计算第一数据68的导出数70。注意,术语“导出数”可被用于表示以任何方式从数据导出的值或函数,并不限于由微分导出的值或函数,即使微分演算推导旨在落入本文所使用的单词“导出数”的范围内。\n[0024] 在图2B所示的低功率模式中,处理器60可被配置成基于来自低功率传感器64的第二数据72和第一数据68和/或第一数据68的导出数70来计算针对第二时间段的生活方式度量66。在两种模式中,第一数据68、第一数据68的导出数70、生活方式度量66、和/或第二数据72(如果可用的话)可被存储在数据存储机28的存储器74中或从数据存储机28的存储器\n74中检索、被显示在显示器20上或被发送到云76或从云76检索。例如,在低功率模式下,在高功率模式期间收集的第一数据68和/或第一数据68的导出数70可从存储器74中检索,并且在计算针对第二时间段的生活方式度量66时被使用。\n[0025] 可穿戴电子设备10可包括可佩戴在用户的手腕上的带。例如,该带可至少部分地由连接欠弯曲区域14的弯曲区域12形成。如上所述,可穿戴电子设备10可替换地被佩戴在用户的其他身体部位上。\n[0026] 在一个实现中,高功率传感器62可以是全球定位系统(GPS)接收器52,而低功率传感器64可以是加速计48。随后,生活方式度量66可以是用户行进的距离,而第一数据68的导出数70可以是用户的步幅长度。步幅长度可简单地通过将由GPS接收器52测量的用户所行进的距离(根据第一数据68)除以由加速计48测量的所进行的步数(根据第二数据72)来计算。在低功率模式下,如果之前未记录步幅长度,则可使用用户的物理简档(例如年龄、性别、体重和/或身高)来估计步幅长度。然而,即使当GPS接收器52当前未操作时,还可通过使用从第一数据68导出的步幅长度来估计更精确的距离。以此方式,可基于个体用户而不是平均用户来估计生活方式度量66。\n[0027] 处理器60可被进一步被配置成将生活方式度量66和先前总的生活方式度量进行求和,以获得当前总的生活方式度量。例如,处理器60可进一步被配置成将用户行进的距离与先前总的距离相加以便获得当前总的距离。当前总的距离可包括在高功率模式和/或低功率模式期间测量的距离。如果用户希望精确地跟踪他整天的移动,则可穿戴电子设备10的不同模式可允许他这样做,而不会过度地消耗电池或丧失精确性。\n[0028] 步幅长度可以是多个步幅长度中的一个,每个相应的步幅长度是为用户的相关联的步态计算的。例如,一旦生活方式监视程序61确定了GPS信号是强的并具有最小误差,则生活方式监视程序61可被配置成当用户正在步行、慢跑、或冲刺时计算步幅长度,并且将这些步幅长度中的任何一个保存在存储器74中。三个步态被作为示例给出,但是任何合理数量的步态可被使用。每个步幅长度可基于用户的物理简档来替换所估计的步幅长度,并且生活方式监视程序61可被配置成基于用户的简档来验证所计算的步幅长度在所估计的步幅长度的容差内。然后,当生活方式监视程序61以低功率模式操作时,对应于由加速计48或另一传感器检测到的用户的当前运动模式的步幅长度可被用于更好地估计用户行进的距离。\n[0029] 以低功率模式和高功率模式操作的一个潜在的益处可包括降低可穿戴电子设备\n10的功率消耗。然而,此配置不限于这一动机。可能存在高功率传感器62对于当前情况不可用或无用的时候。例如,由于例如用户在地下停车库中行走,GPS接收器52可能不具有强信号。例如,如果用户正在一个位置中的跑步机上跑步,则GPS接收机52也可能不提供可用的第一数据68。在这两种情况下,如果先前收集的第一数据68可用,则以低功率模式操作并继续计算生活方式度量66可能是有利的。\n[0030] 在另一实现中,高功率传感器62可以是心率传感器,而低功率传感器64可以是加速计48。心率传感器可以是例如光学脉搏率传感器46,但也可以是任何其他类型的心率传感器。随后生活方式度量66可以是卡路里消耗。与在上述实现中行进的距离一样,卡路里消耗可与先前总的卡路里消耗相加以便获得当前总的卡路里消耗。当前总的卡路里消耗可包括在高功率模式和/或低功率模式期间测量的卡路里消耗。如果用户希望精确地跟踪他一整天消耗的能量,则可穿戴电子设备10的不同模式可允许他这样做,而不会过度地消耗电池或丧失精确性。\n[0031] 第一数据68的导出数70可包括第一导出数和第二导出数,该第一导出数是安静时心率而该第二导出数是恢复率。安静时心率或基础心率通常可以是当用户放松时测得的低心率。安静时心率的值可在导出更精确的值之前由用户最初输入。\n[0032] 处理器60还可进一步被配置成通过以下来计算安静时心率:在用户睡眠时收集第一数据68,过滤出心率范围外的第一数据68,以及基于经过滤的第一数据68计算安静时心率。作为一个示例,心率范围可以是35-85BPM。以此方式,可基于个体用户而不是平均用户来更精确地估计安静时心率。没有这样的先前或导出的数据,生活方式监视程序61可以基于用户简档数据(其可包括用户输入值)进行计算,并且估计不太精确的心率和卡路里消耗。\n[0033] 恢复率通常可以是从锻炼后不久到心率达到较低心率的时间内的心率的下降,通常以每分钟心跳(bpm)测量。更具体地,较低心率可以是安静时心率,或者从锻炼后不久到达到较低心率的时间可以是设定的间隔,例如两分钟。心率下降的程度和心率在其间下降的时间量都可以合并到恢复率中。例如,用户可进行跑步并且在之后的一分钟内经历20bpm的心率降低。获得精确的安静时心率和恢复率可允许生活方式监视程序61能在来自心率传感器的实时第一数据68缺失的情况下更精确地估计当前心率,并且根据所估计的心率来计算卡路里消耗的更精确的估计。例如,如果用户锻炼并然后停止,则恢复率可确定心率平滑且精确的下降,而不是假设为突变或平均用户,从而避免低估或高估了卡路里消耗。\n[0034] 一旦导出,第一数据68的导出数70可基于用户输入值,或甚至是先前导出数70来替换估计。例如,可在可穿戴电子设备10的初始设置阶段期间输入这些值。用户可能随着时间、环境变化、受伤、年龄变得更健康或更不健康或以其他方式偏离导出数70,使得基于保存在存储器74中的导出数70的计算不再精确。同样,诸如第一数据68、第二数据72和生活方式度量66之类的数据也可以随时间在存储器74中更新。以此方式,生活方式监视程序61可适应于随时间改变用户条件。\n[0035] 处理器60还可进一步被配置成以远程模式操作生活方式监视程序61,其中高功率传感器62是通过云76连接的远程设备中的远程高功率传感器。处理器60可被配置成从远程高功率传感器接收第一数据68作为远程数据,并且基于远程数据计算生活方式度量66。例如,远程设备可以是用户手或口袋中的智能电话。在这样的配置中,可穿戴电子设备10可通过例如Wi-Fi或蓝牙从远程设备接收远程数据而不为高功率传感器62本身供电来执行与高功率模式下相同的操作。\n[0036] 图3是利用可穿戴电子设备上的生活方式监视程序来估计生活方式度量的方法\n300的流程图。参考以上描述并在图1A、1B、2A、2B,以及4中示出的可穿戴电子设备的软件和硬件组件来提供方法300的以下描述。可以理解,方法300还可在使用其他合适的硬件和软件组件的其他上下文中来执行。\n[0037] 参考图3,在302方法300可包括以其中第一传感器和第二传感器是可操作的高功率模式操作,第一传感器是高功率传感器,其在操作时比第二传感器消耗更大量的功率,该第二传感器是低功率传感器。\n[0038] 在304,方法300可包括以高功率模式基于来自高功率传感器的第一数据来计算针对第一时间段的关于用户的生活方式度量。在306,方法300可包括以低功率模式操作,其中高功率传感器是不可操作的而低功率传感器是可操作的。通过可穿戴电子设备在两种模式之间切换,在低功率传感器被连续操作的同时,高功率传感器是间歇地可用的。以低功率模式操作,至少部分时间可以节省电池功率而不伴随不可接受的精度下降。\n[0039] 第一数据可被用于计算第一数据的导出数。在308,方法300可包括以低功率模式基于来自低功率传感器的第二数据和第一数据和/或第一数据的导出数来计算针对第二时间段的生活方式度量。在两种模式中,第一数据、第一数据的导出数、生活方式度量、和/或第二数据(如果可用的话)可被存储在存储器中或从存储器中检索、被显示在显示器上或被发送到云或从云检索。例如,在低功率模式下,在高功率模式期间收集的第一数据和/或第一数据的导出数可从存储器中检索,并且在计算针对第二时间段的生活方式度量时可被使用。\n[0040] 在310,方法300可包括将生活方式度量和先前总的生活方式度量进行求和,以便获得当前总的生活方式度量。如果用户希望精确地跟踪她一整天的身体的状况和移动,则可穿戴电子设备的不同模式可允许她这样做,而不会过度地消耗电池或丧失精确性。如上所述,可穿戴电子设备可包括可佩戴在用户的手腕上的带。例如,该带可至少部分地由连接欠弯曲区域的弯曲区域形成,并且可允许用户佩戴该可穿戴电子设备并收集一整天的数据。\n[0041] 在方法300的一个实现中,高功率传感器可以是全球定位系统(GPS)接收器,而低功率传感器可以是加速计。生活方式度量可以是用户行进的距离,而第一数据的导出数可以是用户的步幅长度。在这样的实现中,在310,方法300可然后包括将用户行进的距离与先前总的距离相加以便获得当前总的距离。在312,方法300可包括是多个步幅长度中的一个的步幅长度,每个相应的步幅长度是为用户的相关联的步态计算的。步幅长度可被如上计算。\n[0042] 替换地,在方法300的另一实现中,高功率传感器可以是心率传感器,而低功率传感器可以是加速计。生活方式度量可以是卡路里消耗,并且第一数据的导出数可包括第一导出数和第二导出数。第一导出数可以是安静时心率,而第二导出数可以是恢复率。安静时心率的值可在导出更精确的值之前由用户最初输入。\n[0043] 在314,方法300可包括计算安静时心率。安静时心率可通过以下被计算:在用户睡眠时收集第一数据(316),过滤出心率范围外的第一数据(318),以及基于经过滤的第一数据来计算安静时心率(320)。以此方式,可基于个体用户而不是平均用户来更精确地估计安静时心率。没有这样的先前或导出的数据,生活方式监视程序可以基于用户简档数据(其可包括用户输入值)进行计算,并且估计不太精确的心率和卡路里消耗。恢复率可通常是如上定义的。\n[0044] 上述系统和方法可被用于自适应地计算诸如消耗的卡路里和行进的距离之类的用户的生活方式度量的估计。该系统和方法可包括高功率模式和低功率模式,其中各种传感器处于或不处于操作中。该方法可具有改善可穿戴电子设备的能量消耗的潜在优点,可能得到延长的电池寿命或设备操作时间。\n[0045] 从前述描述中显而易见,本文所描述的方法和过程可被绑定到一个或多个机器的传感及逻辑系统。这样的方法和过程可被实现为计算机应用程序或服务、应用编程接口(API)、库、固件和/或其它计算机程序产品。图1A和1B示出了实施本文所述的方法与过程的传感及逻辑系统的一个非限制性示例。然而,如图4示意性地示出的,这些方法和过程可同样在其他配置和形成因素的传感逻辑系统上执行。\n[0046] 图4示意性地示出了包括操作地耦合到计算系统410的传感器套件412的形状不受限的传感和逻辑系统414。该计算机系统包括逻辑机416和数据存储机418。该计算系统被操作地耦合到显示子系统420、通信子系统422、输入子系统424和/或在图4中未示出的其他组件。\n[0047] 逻辑机416包括被配置成执行指令的一个或多个物理设备。逻辑机可被配置成执行作为以下各项的一部分的指令:一个或多个应用、服务、程序、例程、库、对象、组件、数据结构或其他逻辑构造。这种指令可被实现以执行任务、实现数据类型、转换一个或多个部件的状态、实现技术效果、或以其他方式得到期望结果。\n[0048] 逻辑机416可包括被配置成执行软件指令的一个或多个处理器。作为补充或替换,逻辑机可包括被配置成执行硬件或固件指令的一个或多个硬件或固件逻辑机。逻辑机的处理器可以是单核或多核,且在其上执行的指令可被配置为串行、并行和/或分布式处理。逻辑机的各个组件可任选地分布在两个或更多单独设备上,这些设备可以位于远程和/或被配置用于进行协同处理。逻辑机的各方面可由云计算配置的可远程访问的联网计算设备来虚拟化和执行。\n[0049] 数据存储机418包括被配置成保持可由逻辑机416执行以实现此处描述的方法和过程的指令的一个或多个物理设备。在实现此类方法和过程时,可变换数据存储机的状态(例如,保存不同数据)。数据存储机可包括可移动的和/或内置设备;它可包括光学存储器(例如,CD、DVD、HD-DVD、蓝光碟等)、半导体存储器(例如,RAM、EPROM、EEPROM等)、和/或磁性存储器(例如,硬盘驱动器、软盘驱动器、磁带驱动器、MRAM等)、以及其他。该数据存储机可以包括易失性的、非易失性的、动态的、静态的、读/写的、只读的、随机存取的、顺序存取的、位置可定址的、文件可定址的、和/或内容可定址的设备。\n[0050] 将理解,数据存储机418包括一个或多个物理设备。然而,本文描述的指令的各方面可替换地通过不由物理设备在有限时长内持有的通信介质(例如,电磁信号、光信号等)来传播。\n[0051] 逻辑机416和数据存储机418的各方面可以被一起集成到一个或多个硬件逻辑组件中。这些硬件逻辑组件可包括例如现场可编程门阵列(FPGA)、程序和应用专用的集成电路(PASIC/ASIC)、程序和应用专用的标准产品(PSSP/ASSP)、片上系统(SOC)以及复杂可编程逻辑器件(CPLD)。\n[0052] 显示子系统420可用于呈现由数据存储机418所保持的数据的视觉表示。该视觉表示可采用图形用户界面(GUI)的形式。由于此处所描述的方法和过程改变了由存储机保持的数据,并由此变换了存储机的状态,因此同样可以转变显示子系统420的状态以视觉地表示底层数据的改变。显示子系统420可以包括使用实质上任何类型的技术的一个或多个显示子系统设备。可将此类显示子系统设备与逻辑机416和/或数据存储机418组合在共享封装中,或者此类显示子系统设备可以是外围显示子系统设备。图1A和1B的显示器20是显示子系统420的一个示例。\n[0053] 通信子系统422可以被配置成将计算系统414与一个或多个其他计算设备可通信地耦合。通信子系统可以包括与一个或多个不同通信协议兼容的有线和/或无线通信设备。\n作为非限制性示例,通信子系统可被配置成用于经由无线电话网络、局域或广域网和/或互连网来进行通信。图1A和1B的通信套件24是通信子系统422的一个示例。\n[0054] 输入子系统424可包括诸如键盘、鼠标、触摸屏或游戏控制器等一个或多个用户输入设备或者与这些用户输入设备对接。在一些实施例中,输入子系统可以包括所选择的自然用户输入(NUI)部件或与其对接。这种元件部分可以是集成的或外围的,并且输入动作的转导和/或处理可以在板上或板外被处理。NUI部件的示例可包括用于语言和/或语音识别的话筒;用于机器视觉和/或姿势识别的红外、色彩、立体显示和/或深度相机;用于运动检测和/或意图识别的头部跟踪器、眼睛跟踪器、加速计和/或陀螺仪;以及用于评估脑部活动的电场感测部件。图1A和1B的触摸屏传感器32和按钮34是输入子系统424的示例。\n[0055] 传感器套件412可包括如上参考图1A和1B所描述的一个或多个不同的传感器,例如触摸屏传感器、按钮传感器、话筒、可见光传感器、紫外光传感器、环境温度传感器、接触传感器、光学脉搏率传感器、加速计、陀螺仪、磁力计和/或GPS接收机。\n[0056] 将会理解,此处描述的配置和/或方法本质是示例性的,这些具体实现或示例不应被视为限制性的,因为许多变体是可行的。本文描述的具体例程或方法可以表示处理策略中的一个或多个。如此,所示或所述的各种动作可以被以所示或所述顺序、以其他顺序、并行地执行或者被省略。\n[0057] 本公开的主题包括各种过程、系统和配置以及本文公开的其他特征、功能、动作和/或属性、以及它们的任一和全部等价物的所有新颖且非显而易见的组合和子组合。
法律信息
- 2020-01-14
- 2017-03-22
实质审查的生效
IPC(主分类): G06F 19/00
专利申请号: 201580028915.6
申请日: 2015.05.28
- 2017-02-22
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2013-12-04
|
2013-08-28
| | |
2
| |
2016-03-02
|
2010-11-17
| | |
3
| |
2013-04-10
|
2011-06-01
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |