著录项信息
专利名称 | 改进行程成本结构的方法 |
申请号 | CN200810188799.6 | 申请日期 | 2008-11-04 |
法律状态 | 权利终止 | 申报国家 | 中国 |
公开/公告日 | 2009-11-11 | 公开/公告号 | CN101576155 |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | F16H59/00 | IPC分类号 | F;1;6;H;5;9;/;0;0;;;F;1;6;H;5;9;/;7;0;;;F;1;6;H;5;9;/;7;4查看分类表>
|
申请人 | 通用汽车环球科技运作公司 | 申请人地址 | 美国密执安州
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 通用汽车环球科技运作公司 | 当前权利人 | 通用汽车环球科技运作公司 |
发明人 | A·H·希普;K·Y·金;J·J·麦康奈尔 |
代理机构 | 中国专利代理(香港)有限公司 | 代理人 | 原绍辉;杨松龄 |
摘要
本发明涉及改进行程成本结构的方法,其中一种动力传动系统,包括机械连接到电动机械变速器的发动机,其中所述变速器选择性地运行在多个变速器工作档位状态中的一个以及多个发动机状态中的一个。一种用于控制所述动力传动系的方法,包括:确定当前变速器工作档位状态和发动机状态,确定至少一个潜在变速器工作档位状态和发动机状态,确定与当前以及潜在变速器工作档位状态和发动机状态有关的优选因数,其中与潜在变速器工作档位状态有关的优选因数包括变速器输入速度行程优选因数,优选加权用于当前变速器工作档位状态和发动机状态的优选因数,以及基于所述优选因数选择性地命令改变当前变速器工作档位状态和发动机状态。
1.用于控制动力传动系统的方法,所述系统包括机械连接到电动机械变速器的发动机,并且所述变速器选择性地运行在多个变速器工作档位状态中的一个以及多个发动机状态中的一个,该方法包括:
确定当前变速器工作档位状态和发动机状态;
确定至少一个潜在的变速器工作档位状态和发动机状态;
确定与当前变速器工作档位状态和发动机状态以及潜在变速器工作档位状态和发动机状态有关的优选因数,其中与潜在变速器工作档位状态有关的优选因数包括变速器输入速度行程优选因数;
加权用于当前变速器工作档位状态和发动机状态的优选因数;以及
基于所述优选因数选择性地命令改变当前变速器工作档位状态和发动机状态;
其中确定输入速度行程优选因数包括:
提供第一多个数值,其表示用于变速器工作档位状态的至少两个潜在变化的行程成本因数;
提供多个差值,其处于与一个时间点的不同潜在变速器操作状态有关的不同变速器输入速度之间;以及
组合每个差值和用于潜在变速器工作档位状态变化的行程成本因数。
2.根据权利要求1的方法,其中所述行程成本因数利用包括行程方向加权常数的乘法运算来确定。
3.根据权利要求1的方法,其中组合每个差值和行程成本因数包括乘法运算。
4.根据权利要求1的方法,其中与潜在变速器工作档位状态和潜在发动机状态有关的所述优选因数包括新期望优选因数;新期望优选因数包括每个可能变速器工作档位状态和发动机状态的优选因数,每个可能变速器工作档位状态和发动机状态的优选因数通过将第一多元优选因数与相应的当前变速器工作档位状态和发动机状态的优选因数或期望变速器工作档位状态和发动机状态的因数组合得到,所述第一多元优选因数为用于每个潜在变速器工作档位状态以及潜在发动机状态的优选因数。
5.根据权利要求4的方法,其中作为存在于新期望优选因数中的数值的选择结果,选择性地命令改变当前变速器工作档位状态和发动机状态发生,其中所述数值从由以下内容组成的组中挑选出来:存在于新期望优选因数中的最小数值和存在于所述新期望优选因数中的最大数值。
6.根据权利要求1的方法,还包括定期的重复如权利要求1所述的方法以提供连续迭代。
7.根据权利要求6的方法,其中与潜在变速器工作档位状态和潜在发动机状态有关的所述优选因数包括新期望优选因数;确定与当前变速器工作档位状态和发动机状态有关的优选因数利用了来自先前迭代的新期望优选因数;新期望优选因数包括每个可能变速器工作档位状态和发动机状态的优选因数,每个可能变速器工作档位状态和发动机状态的优选因数通过将第一多元优选因数与相应的当前变速器工作档位状态和发动机状态的优选因数或期望变速器工作档位状态和发动机状态的因数组合得到,所述第一多元优选因数为用于每个潜在变速器工作档位状态以及潜在发动机状态的优选因数。
8.根据权利要求4的方法,其中,存在于新期望优选因数中的其中一个优选因数用于提供信息给换档执行模块。
9.根据权利要求8的方法,其中,所述换档执行模块提供在连续迭代中用于当前变速器工作档位状态和发动机状态的数值。
10.根据权利要求6的方法,其中与潜在变速器工作档位状态和潜在发动机状态有关的所述优选因数包括新期望优选因数;新期望优选因数包括每个可能变速器工作档位状态和发动机状态的优选因数,每个可能变速器工作档位状态和发动机状态的优选因数通过将第一多元优选因数与相应的当前变速器工作档位状态和发动机状态的优选因数或期望变速器工作档位状态和发动机状态的因数组合得到,所述第一多元优选因数为用于每个潜在变速器工作档位状态以及潜在发动机状态的优选因数。
11.根据权利要求1的方法,其中所述优选因数布置在数列中。
12.根据权利要求1的方法,其中所述优选因数是从矩阵中选出来的。
13.根据权利要求2的方法,其中所述工作档位状态包括多个固定档位操作和多个连续可变模式,并且其中根据来自至少一个车载传感器收集的数据,由微处理器定期提供用于变速器模式的建议输入速度,作为用于生成所述差值的基础。
14.根据权利要求13的方法,其中用于变速器模式的所述建议输入速度被过滤以减少噪音,从而提供在期望档位变化时的建议输入速度的精确表示。
15.根据权利要求1的方法,其中加权用于当前变速器工作档位状态和发动机状态的优选因数有效地避免了选定非允许的变速器工作档位状态。
改进行程成本结构的方法\n相关申请的交叉引用\n[0001] 本申请要求2007年11月04日(11/04/2007)提交的美国临时申请No.60/985,256的优先权,其在此通过引用并入。\n技术领域\n[0002] 本公开大体涉及电动机械变速器的控制系统。\n背景技术\n[0003] 本部分的叙述仅仅是提供与本公开相关的背景资料,并且可能不构成现有技术。\n[0004] 已知的混合动力传动系结构可以包括多种扭矩生成装置,其包括内燃机和例如电机的非燃烧机器,这些扭矩生成装置通过变速器装置将扭矩传递给输出构件。一种示例的混合动力传动系包括双模式、复合分解、电动机械变速器,其采用从优选为内燃机的原动机动力源接收牵引扭矩的输入构件和输出构件。所述输出构件可以连接到用于传递牵引扭矩给汽车的驱动系。作为电动机或者发电机运行的机器可以产生输入到所述变速器的扭矩,所述扭矩独立于内燃机所产生的扭矩输入。所述机器可以将通过车辆驱动系传递的车辆动能转换为可储存在贮能装置中的能量。控制系统监控来自车辆和驾驶员的各种输入,并且提供所述混合动力传动系的运行控制,包括:控制变速器工作状态和换挡,控制扭矩生成装置,以及在所述贮能装置和机器当中调节功率互换以便管理所述变速器的包括扭矩和转速在内的输出。\n发明内容\n[0005] 一种动力传动系统,包括机械连接到电动机械变速器的发动机,其中所述变速器选择性地运行在多个变速器工作档位状态中的一个以及多个发动机状态中的一个。一种用于控制所述动力传动系统的方法,包括:确定当前变速器工作档位状态和发动机状态,确定至少一个潜在变速器工作档位状态和发动机状态,确定与当前以及潜在变速器工作档位状态和发动机状态有关的优选因数,其中与潜在变速器工作档位状态有关的优选因数包括变速器输入速度行程优选因数,优选加权用于当前变速器工作档位状态和发动机状态的优选因数,以及基于所述优选因数选择性地命令改变当前变速器工作档位状态和发动机状态。\n附图说明\n[0006] 现在将参考附图通过实例描述一个或多个实施例,在所述附图中:\n[0007] 图1是根据本公开的一种示例动力传动系的原理图;\n[0008] 图2是根据本公开的控制系统和动力传动系的一种示例结构的原理图;\n[0009] 图3示出了与根据本公开的方法有关的第一多元优选因数的布置;\n[0010] 图4示出了根据本公开的多个优选因数的组合;\n[0011] 图5A提供了表示根据本公开的电动机械混合动力变速器的工作档位变化稳定性的图示;\n[0012] 图5B提供了表示根据本公开的电动机械混合动力变速器的工作档位变化稳定性的可选图示;\n[0013] 图6描述了一种结构,其用于执行根据本公开的电动机械混合动力变速器的工作档位变化;\n[0014] 图7示出了根据本公开的、从一个潜在变速器工作档位状态到另一个状态的变化过程中的变速器输入速度的轨迹;\n[0015] 图8示出了根据本公开的、用于电动机械混合动力变速器各个潜在工作档位状态的作为时间函数的变速器输入速度值的变化;\n[0016] 图9示出了根据本公开的、在电动机械混合动力变速器的各个潜在工作档位状态之间的、在选定的时间点处不同的变速器输入速度值之间的rpm值差;以及[0017] 图10示出了根据本公开的、在重置过滤期间电动机械混合动力变速器的输入速度如何在不同模式下变化。\n具体实施方式\n[0018] 现在参考附图,其中所述展示的目的只是为了阐明特定的示例实施例,而不是为了对其进行限制,图1和2示出了一种示例的混合动力传动系。图1示出了根据本公开的所述示例混合动力传动系,其包括连接到发动机14的双模式、复合分解、电动机械混合动力变速器10和包括第一和第二电机(′MG-A′)56、(′MG-B′)72的低转速大扭矩机械。\n所述发动机14和低转速大扭矩机械,即第一和第二电机56、72,各自产生可以被传输到变速器10的动力。由发动机14以及第一和第二电机56、72所产生并且被传输到变速器10的动力用输入和电机转矩以及转速来描述,其中所述输入和电机转矩在这里分别用TI、TA和TB表示,所述转速在这里分别用NI、NA和NB表示。\n[0019] 所述示例的发动机14包括选择性地运行在若干状态以便经由输入轴12传递扭矩给变速器10的多缸内燃机,并且可以是火花点火或者压缩点火发动机。发动机14包括可操作地连接到变速器10的输入轴12的曲轴(未示出)。转速传感器11监测输入轴12的转速。由于在发动机14和变速器10之间的输入轴12上设置的转矩消耗构件,例如液压泵(未示出)和/或扭矩控制装置(未示出),来自发动机14的包括转速和输出转矩的功率输出可以不同于变速器10的输入速度NI和输入扭矩TI。\n[0020] 在一个实施例中,所述示例的变速器10包括三个行星齿轮组24、26和28,以及四个选择性可接合的扭矩传递装置,即离合器C1 70、C2 62、C3 73和C4 75。这里,离合器指的是任何一种摩擦转矩传递装置,包括例如单一或者复合园盘离合器或组件、带式离合器以及制动器。优选为由变速器控制模块(下文称为′TCM′)17控制的液压控制回路42被用作控制离合器状态。离合器C2 62和C4 75优选为包括液压作用的旋转摩擦离合器。离合器C1 70和C3 73优选为包括可以选择性地固定到变速箱68上的液压控制固定装置。每一个离合器C1 70、C2 62、C3 73和C4 75优选为受液压作用,经由液压控制回路42选择性地接收加压的液压流体。\n[0021] 第一和第二电机56、72优选为包括三相交流电机,每个都包括定子(未示出)和转子(未示出),以及相应的分相器80和82。所述每个电机的电机定子被固定到变速箱68的外部,并且包括定子铁心,所述定子快心具有从其中延伸出来的绕成线圈的电绕组。第一电机56的转子支撑在经由第二行星齿轮组26连接到轴60的毂衬齿轮上。第二电机72的转子固定地连接到筒形轴毂66上。\n[0022] 每一个分相器80和82优选为包括带有分相器定子(未示出)和分相器转子(未示出)的可变磁阻装置。所述分相器80和82适当的设置并且安装在第一和第二56和72中的相应一个上。分相器80和82中相应一个的定子连接到第一和第二电机56和72其中一个的定子上。所述分相器转子连接到相应第一和第二电机56和72的转子。每一个分相器80和82可通讯地(signally)和可操作地(operatively)连接到变速器功率变换器控制模块(下文称为′TPIM′)19,并且各自检测和监测分相器转子相对于分相器定子的轮转位置,从而监控第一和第二电机56和72中相应一个的轮转位置。另外,判断来自分相器\n80和82的信号输出,以分别提供第一和第二电机56和72的转速,即NA和NB。\n[0023] 所述变速器10包括例如轴的输出构件64,其可操作地连接到车辆(未示出)的驱动系90,以便提供例如到车轮93的输出功率,其中一个车轮如图1所示。所述输出功率通过输出转速No和输出转矩To来表示。变速器输出轴转速传感器84监测所述输出构件64的转速和旋转方向。每一个车轮93优选为装有适于监测车轮转速的传感器94,以便确定用于制动控制、牵引性能调节和车辆加速控制的车辆转速、独立车轮转速和相对车辆转速,其中所述传感器94的输出由根据图2所示的分布式控制模块系统的控制模块来监控。\n[0024] 来自发动机14的输入扭矩以及来自第一和第二电机56、72的电机转矩(分别为TI、TA和TB)通过来自燃油或者存储在电能存储装置(下文称为′ESD′)74中电势的能量转换而产生。所述ESD 74经由直流电输送导体27高压直流电连接到TPIM19。所述输送导体27包括接触器开关38。当所述接触器开关38关闭时,在正常运行时电流可以在ESD \n74和TPIM19之间流动。当所述接触器开关38打开时,在ESD 74和TPIM19之间的电流流动中断。响应于满足电机转矩TA和TB的第一和第二电机56、72的扭矩信号,TPIM19通过输送导体29在它和第一电机56之间往返传递电能,并且同样地TPIM19通过输送导体31在它和第二电机72之间往返传递电能。电流根据提供给TPIM的命令流入或流出ESD74,其中所述命令源自这样的因数,包括:驾驶员转矩请求、当前工作条件和状态,并且该命令在任何时刻确定ESD74是否处于充电、放电或静态平衡状态。\n[0025] 所述TPIM19包括一对功率变换器(未示出)和相应的发动机控制模块(未示出),所述发动机控制模块设置成接收扭矩信号并且由此控制变流器状态,用于提供电机驱动或者回收功能以满足预定电机转矩TA和TB。所述功率变换器包括已知的补偿三相功率电子装置,并且每一个都包括多个绝缘栅双极晶体管(未示出),所述绝缘栅双极晶体管用于通过高频转换将来自ESD 74的直流电功率转换为激励第一和第二电机56、72中相应一个的交流功率。所述绝缘栅双极晶体管形成为设置成接收控制命令的开关式电源。通常的三相电机的每一相都有一对绝缘栅双极晶体管。控制所述绝缘栅双极晶体管的状态以提供电机驱动机械动力产生或者电力回收功能。根据收到的通常基于包括当前工作状态和驾驶员转矩要求的因数的命令,所述三相变流器经由直流电输送导体27接收或者提供直流电功率,并且在它和三相交流功率之间进行转换,所述三相交流功率经由输送导体29被传导给作为电动机运行的第一和第二电机56、72,或者经由输送导体31由作为发电机运行的第一和第二电机56、72产生。\n[0026] 图2是所述分布式控制模块系统的示意性方框图。在下文中描述的部件包括整体车辆控制结构的子集,并且提供图1所示示例混合动力传动系的协作系统控制。所述分布式控制模块系统综合处理相关的信息和输入,并且执行算法以控制各个致动器从而实现控制目标,其包括与燃料经济性、排放物、性能、驾驶性能和硬件设备的防护相关的目标,其中所述硬件设备包括ESD 74的电池以及第一和第二电机56、72。所述分布式控制模块系统包括发动机控制模块(下文称为′ECM′)23、TCM 17、蓄电池组控制模块(下文称为′BPCM′)21、制动控制模块(下文称为′BrCM′)22和TPIM19。混合动力控制模块(下文称为′HCP′)5提供对所述ECM 23、TCM 17、BPCM21、BrCM 22和TPIM 19的管理控制和协调。用户界面(′UI′)13可操作地连接到多个装置,通过这些装置车辆驾驶员进行控制或者指示所述电动机械混合动力传动系的运行。所述装置包括确定驾驶员扭矩请求的加速踏板113(′AP′)、驾驶员制动踏板112(′BP′)、变速器档位选择器114(′PRNDL′)和车辆转速巡航控制(未示出)。所述变速器档位选择器114可以具有离散数量的驾驶员可选位置,包括使输出构件64能够向前和反向的旋转方向。\n[0027] 上述控制模块经由局域网(下文称为′LAN′)总线6同其它的控制模块、传感器和致动器通讯。所述LAN总线6允许在各个控制模块之间的操作参数状态和致动器指令信号的结构化通讯。采用的具体通信协议是专门的。所述LAN总线6和适当的协议保证在上述控制模块以及提供例如防抱死制动、牵引力调节和车辆稳定性等功能的其它控制模块之间的稳定通信和多控制模块接口。可以使用多种通讯总线来改进通讯速度以及提供相当水平的信号冗余度和完整性。在个别控制模块之间的通讯还可以利用直接耦合来进行,例如串行外围接口(′SPI′)总线(未示出)。\n[0028] 所述HCP 5提供混合动力传动系的管理控制,用于协调ECM 23、TCM 17、TPIM 19和BPCM21的运行。以来自用户界面13和包括ESD 74在内的混合动力传动系的各个输入信号为基础,HCP 5确定各个信号,包括:驾驶员扭矩请求、送往驱动系90的输出转矩信号(′TCMD′)、输入扭矩信号、变速器10使用的扭矩输送离合器C1 70、C2 62、C3 73、C4 75的离合器扭矩(TCL′);以及第一和第二电机56、72的扭矩信号TA和TB。所述TCM 17可操作地连接到液压控制回路42,并且提供包括监控各个压力传感器(未示出)以及生成并传送控制信号到各个螺线管(未示出)的各种功能,从而控制包含在所述液压控制回路42之内的压力开关和控制阀。\n[0029] 所述ECM 23可操作地连接到发动机14,并且用于通过多个离散的线路获得来自传感器的数据以及控制发动机14的致动器,为简单起见所述多个离散的线路用集成双向接口电缆35表示。所述ECM 23接收来自HCP 5的输入扭矩信号。以监控的发动机转速和负载为基础,ECM 23确定在该点处及时提供给变速器10的实际输入扭矩TI,其被传递给HCP 5。ECM 23监测来自转速传感器11的输入以确定送至输入轴12的发动机输入速度,其被转换为变速器输入速度NI。ECM 23监测来自传感器(未示出)的输入以确定其它发动机操作参数的状态,包括例如歧管压力、发动机冷却液温度、环境气温和环境压力。例如,发动机载荷可以通过歧管压力或者通过监测加速踏板113的驾驶员输入来确定。ECM 23产生并且传送指令信号以控制发动机致动器,包括例如都没有示出的燃料喷射器、点火模块和节流控制模块。\n[0030] TCM 17可操作地连接到变速器10,并且监测来自传感器(未示出)的输入以确定变速器操作参数的状态。TCM 17产生并且传送指令信号以控制变速器10,包括控制液压控制回路42。从TCM 17到HCP 5的输入包括每一个离合器即C1 70、C2 62、C3 73和C4 75的估算离合器扭矩,以及输出构件64的旋转输出速度No。其它的致动器和传感器可能用来提供从TCM 17到HCP 5的用于控制目的的附加信息。如下文所述,TCM 17监测来自压力开关(未示出)的输入,并且选择性地致动液压控制回路42的压力调节螺线管(未示出)和移位螺线管(未示出),以便选择性地激励各个离合器C1 70、C2 62、C3 73和C4 75,从而实现各个变速器工作档位状态。\n[0031] BPCM 21可通讯地连接到传感器(未示出)以监测ESD 74,包括电流和电压参数的状态,从而提供ESD 74的表示电池参数状态的信息给HCP 5。所述电池的参数状态优选为包括蓄电池荷电状态、电池组电压、蓄电池温度和由范围PBAT_MIN到PBAT_MAX表示的有效蓄电池动力。\n[0032] 每一个控制模块ECM 23、TCM 17、TPIM 19、BPCM 21和BrCM 22优选为通用数字计算机,其包括微处理器或者中央处理器、包括只读存储器(′ROM′)的存储介质、随机存取存储器(′RAM′)、电可编程序只读存储器(′EPROM′)、高速时钟、模数转换(′A/D′)和数模转换(′D/A′)电路、输入输出电路和装置(′I/O′)、以及适当的信号处理和缓冲电路。每一个控制模块具有一组控制算法,包括存储在其中一个存储介质上并且执行以提供每个计算装置的相应功能的常驻程序指令和标定。在所述控制模块之间的信息传输优选为利用LAN总线和SPI总线来完成。所述控制算法在预定周期内执行,因此每个算法每个周期至少被执行一次。利用预置的标定,存储在非易失性存储器装置中的算法通过其中一个中央处理器执行,以监测来自传感装置的输入并且执行控制和诊断程序从而控制致动器的运行。定期执行所述周期,例如在混合动力传动系正在进行的工作期间的每个3.125、\n6.25、12.5、25和100毫秒。但是,可以选择处于大约2毫秒和大约300毫秒之间的任何间隔。或者,可以响应任何选定事件的发生而执行算法。\n[0033] 如下面的表1所示,所述示例的混合动力传动系选择性地运行在几个工作档位状态的其中之一,所述工作档位状态可以通过发动机状态和变速器状态来描述,其中所述发动机状态包括发动机工作状态(‘on’)和发动机熄火状态(′OFF′)中的一个,所述变速器状态包括多个固定档位和连续可变运行模式。表1\n[0034] 在所述表中描述了每一个变速器工作档位状态,并且显示了某个特定地离合器C1 \n70、C2 62、C3 73和C4 75应用于每个工作档位状态。仅仅为了″固定″第三行星齿轮组\n28的外齿轮构件,通过使用离合器C1 70选择了第一连续可变模式,即EVT模式1或者M1。\n发动机状态可以是ON(′M1_Eng_On′)或者OFF(′M1_Eng_Off)其中之一。为了将轴\n60连接到第三行星齿轮组28的托架上,通过只使用离合器C2 62选择了第二连续可变模式,即EVT模式2或者M2。发动机状态可以是ON(′M2_Eng_On′)或者OFF(′M2_Eng_Off′)其中之一。对本说明书来说,当发动机状态为OFF时,发动机输入速度等于零转数/分(′RPM′),即发动机曲轴没有旋转。固定档位操作提供了变速器10的输入-输出速度即NI/No的固定比率运行。通过使用离合器C1 70和C4 75选择了第一固定档位运行(′G1′)。通过使用离合器C1 70和C2 62选择了第二固定档位运行(′G2′)。通过使用离合器C2 62和C4 75选择了第三固定档位运行(′G3′)。通过使用离合器C2 62和C3 73选择了第四固定档位运行(′G4′)。由于行星齿轮24、26和28中齿轮比的减少,输入-输出速度的固定比率运行随着固定档位运行的增加而增加。第一和第二电机56和\n72的各自转速NA、NB取决于由离合器限定的机构的内旋转,并且与在输入轴12处测量的输入速度成正比。\n[0035] 响应于通过用户界面收集的经由加速踏板113和刹车踏板112的驾驶员输入,HCP \n5和其它控制模块中的一个或多个确定命令扭矩信号TCMD,其满足在输出构件64处执行并且传递到传动系统90的驾驶员扭矩请求TO_REQ。最终的车辆加速可以受其它因数的影响,包括例如道路阻力加载、道路坡度和车辆质量。基于包括动力动力系的各种运行特性的输入,驱动变速器10的所述工作范围状态。这包括经由加速踏板113和刹车踏板112送到用户界面13的驾驶员扭矩请求。\n[0036] 在某些实施例中,所述工作范围状态可以根据动力传动系扭矩要求来判定,所述动力传动系扭矩要求由在电能生成模式或者扭矩生成模式中操作第一和第二电机56、72的信号所引起。在某些实施例中,通过最优化算法或者程序可以确定所述工作范围状态,其中所述最优化算法或者程序基于包括输入驾驶员动力需要、蓄电池荷电状态、发动机14以及第一和第二电机56、72的工作效率在内的输入确定优先选择的工作档位状态。基于嵌入在所述执行选择程序中的预定结果标准,控制系统管理来自发动机14以及第一和第二电机56、72的扭矩输入,从而控制系统操作有效地管理与ESD荷电状态的期望电平和燃油供给相当的资源。此外,基于在一个或多个部件或者子系统内的故障检测,可以确定包括任何一种期望部件的过度运行(over-riding)在内的操作。HCP 5监测扭矩生成装置,并且确定来自变速器10的实现满足驾驶员扭矩请求所必需的输出转矩的功率输出。ESD 74以及第一和第二电机56、72电可操作地连接以便在彼此之间的功率流动。此外,发动机14、第一和第二电机56、72以及机电变速器10是机械操作的连接,以便在彼此之间输送功率从而产生送到输出构件64的功率流。\n[0037] 考虑到对于装有电动机械混合动力变速器的装有发动机的车辆的各个可能工作状态,包括例如道路坡度和驾驶员扭矩请求的各种各样的环境以及路状,通常用于电动机械混合动力变速器来说,在它的操作期间的一定时刻,可以潜在的接合在不止一个变速器工作档位状态,包括表I中说明的这些档位状态。此外,在通常的行进期间,包括电动机械混合动力变速器的装有发动机的车辆的确会经历在道路坡度、节气门开度和刹车踏板下降方面的每个改变,考虑到在包括燃料经济性、变速器的所需输出扭矩和ESD 74的荷电状态的这些因数之间的综合平衡,不同变速器工作档位状态和发动机的发动机状态可以随时地有利的预测。在任何一个瞬时,一个特定的变速器工作档位状态和发动机状态可能是理想的、有利的或者优选的,而在随后的瞬时,其它的变速器工作档位状态和发动机状态可能是理想的、有利的或者优选的,因此即使在相对短的操作时间间隔内,例如五分钟,在这些时间间隔内也会出现几十个或更多理想的、有利的或者优选的变速器工作档位状态和发动机状态。然而,本公开提供了根据每个在工作状态方面的单一改变而改变变速器工作档位状态和发动机状态,其中所述工作状态被认为在具有电动机械混合动力变速器的装有发动机的车辆中不是必要理想的。\n[0038] 根据本公开的一个实施例,图3显示了第一多个数值,其中每个数值表示用于电动机械混合动力变速器的每个潜在工作档位状态以及发动机的潜在发动机状态的优选因数,包括表I所描述的工作档位状态和发动机状态。在图3中,标识M1和M2指的是电动机械混合动力变速器的模式1和模式2。标识G1、G2、G3和G4分别指的是档位1、档位2、档位3和档位4,并且HEOff是指发动机工作或者发动机停止的发动机状态。在本公开的一个实施例中,可以任意分配任何一个或更多的这些优选因数。在另一个实施例中,任何一个或更多的这些优选因数可以构成通过任何一种算法或者其它的数据处理方法产生的输出,其中所述算法或者其它的数据处理方法把通过任何一个或更多传感器提供的任何信息作为输入或者基础,所述传感器布置在配备这种电动机械混合动力变速器的装有发动机的车辆的任何位置上,或者布置在可能获得数据的它的驱动系的任何部分上或者附近。这些传感器可以包括但不限于:车轮转速感传器94、输出速度传感器84以及转速传感器11。\n[0039] 期望为图3所示每一个变速器工作档位状态和发动机状态而设的所述优选因数保持与他们的相应变速器工作档位状态和发动机状态相联系,并且根据本公开的一个实施例,如图3所示这些优选因数显示在一个数列中。该布置不是硬性的要求,但是如同图4所示当执行根据本公开的方法时是方便的。\n[0040] 本公开还提供多个数值,其中每个数值与当用于装有发动机的车辆的电动机械混合动力变速器在任何选定时间点的可能工作档位状态和发动机状态中的一个有关,例如当车辆行进在路面时的操作期间,其中多数可能是指当前工作档位状态值。优选方案包括与车辆的发动机状态有关的一个数值。该第二多个数值显示为布置在图4的排列中,标记为″当前工作档位因数″,其包括用于变速器工作档位状态和发动机状态两者的数值。\n[0041] 图4示出了来自图3的第一多元优选因数的数值是如何与来自当前工作档位状态和发动机状态的第二多元优选因数相组合的。在一个实施例中,所述组合是通过对每个排列中的每个相应工作档位状态和发动机状态的数值求和而实现的,从而得出包括每个可能变速器工作档位状态和发动机状态的优选因数的第三排列,其标记为“新期望工作档位因数”。在这里,期望工作档位状态是指这样的变速器工作档位状态或者发动机状态,出于这样或那样的原因,其通常与驾驶性能有关,但是可以与发动机经济性、排放物或者电池寿命有关,并且比当前变速器工作档位状态和/或发动机状态更理想。存在于第三排列中的数值可以彼此对比,并且在一个实施例中,存在于第三排列中的最小数值表示这样的变速器工作档位状态或者发动机状态,其将被选定或者评估用于作为基础的选择,当包括电动机械混合动力变速器的装有发动机的车辆运行时基于所述基础在电动机械混合动力变速器的工作状态方面作出改变。例如,在图4的第三排列中,最小的数值是7,相应于电动机械混合动力变速器的模式1操作,尽管通过在当前工作档位排列中的最小数值零证明,所述车辆的变速器的当前工作档位状态是模式2。在一个例证性的、非限制示例实施例中,信号将被发给嵌入在TCM 17中的换档执行模块,促成变速器工作档位状态从模式2变为模式1,其中所述变化可能会受到TCM的影响。在可选的实施例中,TCM可能具有另外的决定形成数据和算法以接受并执行由根据本公开的过程所引起的建议指令变化,或者根据编程入TCM 17的在一个实施例中可以是随机的其它因数拒绝执行,并且在其它的实施例中根据具有通过车辆上传感器提供的输入的一个或多个算法的输出拒绝执行。在本公开的一个实施例中,TCM 17提供当前工作档位因数,其可以是与第二多元优选因数的数值相同的格式。在其它的实施例中,TCM 17提供不同于涉及第二多元优选因数的任何格式的当前工作档位因数。\n[0042] 在另一个实施例中,根据图3描述的第一多元优选因数可以与可选的多个优选因数组合,所述可选的多个优选因数描述在图4中标记为“期望工作档位因数”(包括用于变速器工作档位状态和发动机状态的数值)的排列中,以得出包括被认为是“新期望工作档位因数″的一组优选因数的第三排列。包括期望工作档位因数的所述优选因数可以是通过任何一种算法或者其它的信息数据处理方法产生的输出,其中所述信息通过任何一个或更多传感器提供,所述传感器布置在配备这种电动机械混合动力变速器的装有发动机的车辆的任何位置上,或者布置在可能获得数据的它的驱动系的任何部分上或者附近。这些传感器可以包括但不限于:车轮转速感传器94、输出速度传感器84以及转速传感器11。在另一个实施例中,根据图3描述的第一多元优选因数可以与来自当前工作档位因数和期望工作档位因数的优选因数组合,从而得出包括新期望工作档位因数的第三排列。\n[0043] 通常,响应于配备电动机械混合动力变速器的装有发动机的车辆的工作状态变化,在所述期望工作档位因数当中的一个或多个优选因数将随时间变化,并且这些因数的值在车辆运行期间可以增加或者减小。例如,当车辆驾驶员在低速度行进时针对向上的坡度生成扭矩请求时,与档位1操作有关的优选因数可能会相应地减值。类似地,当以等速行进时车辆驾驶员针对下坡生成制动力矩请求时,与档位1操作有关的优选因数可能会基本上增加数值,以便实质上排除选择档位1工作档位。\n[0044] 在图4中,包括当前工作档位因数和期望工作档位因数的数列中的数值只是用于例证性目的,并且实际上这些优选因数组中的数值可以彼此不同。对于其中来自图3的第一多元优选因数与那些期望工作档位因数组合的实施例,提供了包括用于新期望工作档位因数的优选因数的第三排列,其中至少一个因数随后被提供给可以嵌入在TCM 17中的换档控制模块。对于其中换档控制模块命令执行变速器工作档位状态或者发动机状态或者两者的改变的例子,包括新期望工作档位因数的所述优选因数作为本公开过程的输入和作为在这里描述的连续迭代中的期望工作档位因数被传送,正如在这种实施例中理想的是在期望或者选定的任何时间间隔反复执行如这里所描述的方法,所述时间间隔可以是在大约2毫秒和大约300毫秒之间的任何间隔,包括在它们之间的所有间隔和间隔范围。\n[0045] 在根据本公开的优选因数的优选组合中,理想的是只组合彼此类似性质的优选因数,即与M1有关的优选因数可以只与涉及M1的其它优选因数组合,G2与G2一起诸如此类。\n虽然根据本公开一个实施例,包含多个优选因数的数列的组合已经被显示和描述作为包括这种数列的求和,并且选择排列中的最小值作为考虑到进行电动机械混合动力变速器工作档位变化的值,但是本公开还包括这样的实施例,其中选择标准将选择最大值。在其它的实施例中,两个或更多数列的组合可以包括相应于数列中每个工作档位的数值的减法、除法或者乘法,这样组合使得其中一个值相对于作为这种组合结果存在的剩余值是独特的或者可区分的,其中每个值表示相对优选发动机状态或者变速器运行状态。然后根据在每个这种实施例中当前的最高或者最低数值、或者任何其它的可区分的数值属性来进行选择。对于这种情形,其中存在于由在这里提供的优选因数的组合产生的一个组或数列中的两个或更多优选因数是彼此相同或者非可区分的,根据这种非可区分的值的变速器工作档位的选择可以是随机的,或者可以设置为任何期望的默认选择。\n[0046] 在本公开的一个实施例中,图3所示排列中的第一多元优选因数的数值可以选取为这样的值,即当其同图4所述的期望工作档位因数或者当前工作档位因数中的数值相组合时足以提供偏差作用。为了方便起见根据一个实施例,来自图3的这种优选因数的组可以提供并且布置成矩阵,如下面的表II和表III所示:表II用于稳定当前工作档位的偏差补偿矩阵\n因此,用于当前工作档位因数的多个优选因数可能由这种矩阵提供。在这样一个布置下,如果电动机械混合动力变速器的当前工作档位是模式1,则来自第一排的数值被选为用于如这里所描述的数列组合的排列的数值。用于期望工作档位因数的数列可以是从例如表III所示的矩阵中选出来的,表示与电动机械混合动力变速器的期望工作档位状态和发动机状态有关的优选因数值。表III用于稳定在前的选取期望工作档位的偏差补偿矩阵[0047] 当根据本公开将包括根据图4所述的当前工作档位因数和理想工作档位因数的数列与根据图3提供的多个优选因数一起组合时,净效果将通过包含根据图3提供的优选因数使变速器换档稳定到期望工作档位和当前工作档位。通过在以上表II和III中审慎地选择值,意外的好处出现,即有可能选择阻止电动机械混合动力变速器工作档位状态的特定变化的值。例如,可能容许工作档位从模式2变为档位4,但是可能禁止工作档位从模式2变为档位3,此处方法的用户通过他们对优选因数数值的审慎选择而决定选择容许或者禁止这些变化。通常,不管是基于变速器的输出速度或者通过用户选择的其它标准,理想的是避免选择非允许的运行状态。在一个实施例中,独立于期望变速器工作档位状态,用于变速器模式1和模式2操作的不同潜在输入速度在提供第一多个数值中的用于这些状态的相应数值方面随时间被估量。根据一个实施例,选择过程包括只考虑与选择的期望变速器工作状态有关的输入速度。在一个优选方案中,表示当前变速器工作档位状态的数值具有零偏差。在其它的实施例中,表示当前变速器工作档位状态的数值具有相对小的偏差,并且可以是正或者负。虽然显示为正数值,但是根据本公开的优选因数可以是负的,因为此处组合用于特定结果的不同优选因数的方法的最后结果通常依赖于彼此之间的相对值。\n[0048] 根据本公开的换档过程稳定的净效果或者电动机械混合动力变速器的工作档位变化显示在图5A中,其利用功率损失作为它的纵坐标;但是,可以根据需要使用其它的的纵坐标单位。在图5A中通过点波形线显示了与车辆运行在档位1有关的功率损失和改变工作状态的时间的关系。当该功率损失沿着标记为模式1的时间横坐标改变时,有可能应用电动机械混合动力变速器的其它工作档位状态以便有利于燃料经济性、蓄电池荷电状态、总转矩输出等等。然而,考虑到通常驾驶员的随时间变化的宽范围扭矩请求变化,多个换档或者变速器模式变化将不利的影响这种配置的车辆的驾驶性能。因此,通过当前公开的偏差组合,通过考虑描述的优选因数,与车辆运行在档位1有关的功率损失随改变工作状态时间的变化可以在纵坐标比例尺上向上移动,来到相应的实体波形线,其中偏差的数值通过分别来自表II和表III第一排的因数A和B的和来表示。根据图5A所述结果是,变速器工作档位保持在模式1,直到与运行在该模式有关的功率损失加上所述偏差量超过运行在另一个工作档位状态的功率损失,在本例子中所述另一个工作档位状态为档位1,在这一点处工作档位状态的变化受到影响,同时在整个所示时间间隔中的功率损失遵循实体轨道标记的路线。因此,其中电动机械混合动力变速器的过度工作档位状态改变发生的情形被保持在通过选取的优选因数限定的任何适合需要的水平,所述优选因数可以平均他们的最小化,以及基本上或者完全消除其最小化。该结果还描述在图5B中,其显示了作为纵坐标的变速器期望工作档位状态,描述了排除被认为是用于根据本公开配备电动机械混合动力变速器的车辆的某些最终用途应用的不希望的工作档位状态改变。\n[0049] 在一个实施例中,如这里所描述的矩阵、数列或者优选因数的其它布置以硬件或软件存贮器的方式存在于或者可存取于微处理器中,并且如这里所描述的组合优选为利用这种处理装置来执行,然后所述处理装置产生输出到TCM 17,TCM 17使用这种输出作为在它自己的决定形成方法中的输入。然而,除了此处描述的这种矩阵或数列之外,在便于计算目的的存贮器中的优选因数的任何布置都可以使用。单项的优选因数可以涉及或者基于许多与车辆运行有关潜在的变量,并且包括但不限于与能量使用率、驾驶性能、燃料经济性、排气管排放物和蓄电池荷电状态有关的变量,同时关于这种变量的信息通过传感器在一个实施例中提供。在其它的实施例中,所述优选因数可能来源于或者基于包括由于皮带、滑轮、阀和链所引起的损失在内的车辆的整个机械驱动系统中的损失、在电气系统中的损失、热损失、电机功率损失、仪器内电池动力损失、或者在车辆系统中的独自地或者与任何一个或更多其它的损失结合的任何其它附加损失。\n[0050] 图6描述了包括微处理器的结构,所述微处理器能够执行根据本公开一个实施例的电动机械混合动力变速器的工作档位状态变化。图6显示了微处理器MP,其具有当前期望范围优选因数的输入,并且所述优选因数根据图3所示。所述微处理器具有输出,其被输入到传动控制模块TCM 17,TCM 17本身以多个当前工作档位状态优选因数的形式提供反馈到所述微处理器。TCM17能够提供建议换档执行指令到变速器10。\n[0051] 此处描述的配备电动机械混合动力变速器(包括相同功能的装置)的车辆的运行还包括变速器输入速度NI,其本身以在装有发动机的车辆行进期间的车辆工作状态变化的为条件。在经历工作状态变化之后,可以确信多数情况下不同的变速器工作档位状态可以变为比当前或者当前变速器工作档位状态更期望地应用。通常,当装有发动机的车辆行进在相同的给定速度时,不同的运行状态或者变速器操作状态被考虑应用作为运行在相同给定速度的可选运行状态,对于不同的可能变速器工作档位状态变速器输入速度NI是不同的。因此,伴随着变速器输入速度NI的变化,变速器工作状态和/或发动机状态的变化是理想的。\n[0052] 图7示出了当配备这里描述的电动机械混合动力变速器的车辆进行从M1到M2的示例工作档位状态变化时,变速器输入速度NI如何随时间变化的实例。用于M1的NI表示当当前变速器工作档位状态是M1时的当前NI。G2 NI和M2 NI表示相应变速器工作档位状态的选择(期望)NI。由于工作档位状态从M1到M2的直接变化是禁止的,变速器必须首先经过G2。在所述变化期间,当从M1到G2时必要的变速器输入速度NI首先减小,然后在短暂运行在G2期间随着时间的过去稍微地增加,在那之后在实现M2运行中NI急剧的增加。因此,变速器输入速度NI的经历的轨迹或者″行程″确定如下:(M1 NI-G2 NI)+(M2 NI-G2 NI) [1]其中,M1 NI是用于变速器M1运行的变速器输入速度;G2 NI是用于变速器G2运行的变速器输入速度,M2 NI是用于变速器M2运行的变速器输入速度,并且G2 NI是用于变速器G2运行的变速器输入速度。通过对NI变化方向的加权,变速器输入速度经历的所述行程的总“成本”可以通过下述运算得出:TC=[(M1 NI-G2 NI)*a+(M2 NI-G2 NI)*b]*x [2]其中,″*”字符表示乘法运算,a和b是定值,其中a用于NI中的负变化并且b用于NI中的正变化。在可选实施例中,a和b是可变参数,其是NI行程的相应距离或者相应期望变速器工作档位状态的函数。变量x,行程方向加权常数,是一个可以由车辆工程师设置或者确定的主观值。x的确定考虑了变速器工作档位状态潜在的变化是否首先要求调高档继之以接低档,或者是否它首先要求接低档继之以调高档,如图7示。如果所需顺序是接低档然后调高档,则x设置为主观测定值c。如果所需顺序是调高档然后接低档,x设置为主观测定值d。对于图7所示情形,用于确定TC的公式是:TC=[(M1 NI-G2 NI)*a+(M2 NI-G2 NI)*b]*c [3]通过类似的算法,通过考虑在车辆行进的任一时间点对于变速器工作档位状态和发动机状态的给定潜在变化的NI必须经历的行程,可以容易地设置用于变速器工作档位状态和发动机状态的每个潜在变化的行程成本因数(TC)。虽然为了便于举例图7所示NI的变化沿直线轨迹,但是在实际操作中NI的变化也可以在全部或者一部分变化期间沿曲线轨迹,其中所述轨迹可以是中凹向上或者中凹向下。如同图7所示发生在不同的时间点,用于M1的NI值的运算以及用于G2和M2操作的NI值运算可以同时进行,其中M1在该实例中是监控当前NI值的所述行程的起点,G2和M2表示所述行程的中间和最后目的地。\n[0053] 图8图示了用于此处描述的配备电动机械混合动力变速器的装有发动机的车辆运行期间所示每个变速器工作档位状态的NI选择值如何随时间变化。当前NI曲线表示在该实例中是当前变速器工作档位状态是M1时监测的当前NI值。在一个实施例中,任意选择在各个时间点选定的NI值(其可以在可选实施例中是期望的NI值或者所需的NI值),从而得到所示曲线。在其它的实施例中,根据具有由车载传感器提供输入的一个或多个算法的输出来确定各个时间点的选定NI值,其在例如通过微处理器处理之后可以提供与图8所示曲线相似的或者不同的曲线。重要的是,如图9所示,对于值得考虑的每个时间点TX,存在与每个曲线有关的单个点,其可以用作计算标记为“Δrpm”的rpm差的基准,所述rpm差有利于确定对于任何期望时间点的与每个潜在变速器工作档位状态变化有关的行程成本因数。虽然此处使用rpm来举例,但是其它的转速量度也同样适用。在一个实施例中,所述Δrpm值可以方便的显示在下面表IV的排列中:表IV与潜在变速器工作档位状态变化有关的rpm差值\n M1 M2 G1 G2 G3 G4 HEOFF\n 0 Δrpm3 Δrpm1 Δrpm3 Δrpm4 Δrpm5 Δrpm6\n rpm2\n其中,与M2有关的rpm差包括早先描述的M1到G2以及G2到M2的rpm差。用于rpm运算的所述M1 NI值是当前M1 NI值,并不是选定的M1 NI值。表IV中的Δrpm值是当变速器当前运行在M1时的示例值,当M1的所述rpm值为零时,其具有倾向于保持变速器工作档位状态为M1的偏差作用,因此根据M1运行稳定变速器工作档位状态。在一个实施例中,与每个潜在变速器工作档位状态变化有关的Δrpm值,例如提供于表IV中的那些值,接下来每个乘以上面用于每个相关潜在变速器工作档位状态变化的限定TC的方程式中的行程方向加权常数a、b、c、d(其在可选实施例中可以是行程的相应距离、Δrpm或者相应期望范围的函数的可变参数),从而得出包括多个行程成本因数(TC)的新排列,所述行程成本因数表示用于每一变速器工作档位状态的优选因数,其基于输入速度行程或者与每个潜在变速器工作档位状态变化有关的曲线是有效的,表V中数值仅用于举例目的而不用于限制本公开:表V基于变速器输入速度NI行程的优选因数\n M1 M2 G1 G2 G3 G4 HEOFF\n 0 0.6 0.3 0.4 0.5 0.7 0.8\n[0054] 如表V所示的与每个潜在变速器工作档位状态有关的基于输入速度行程或者曲线的所述优选因数(“变速器输入速度行程优选因数”)在这里特定的可以与其它的组优选因数组合,这些优选因数包括根据图4所述的一或多组优选因数,以便产生新期望工作档位因数。\n[0055] 如图8所示在各个时间点的选定的NI值可以基于一个或多个算法的输出,所述算法在具有由车载传感器提供的一个或多个输入的微处理器中执行,所述传感器包括但不限于此处提及的传感器。在某些实施例中,用于M1运行和M2运行的变速器输入速度NI与变速器的期望工作档位状态无关地提供在选定的间隔处。在一个实施例中,用于M1的NI值通过搜索和选择与最小功率损失有关的NI值的微处理器选定,所述最小功率损失在该实施例中可以用作或者作为用于从图3确定用于M1的优选因数的基础。同时或者在大约同时,用于M2运行的NI值通过搜索和选择与最小功率损失有关的NI值的微处理器来选定,所述最小功率损失可以用作或者作为用于从图3确定用于M2运行的优选因数的基础。工作状态的轻微变化可以基本上改变优选因数,并且可以导致企图改变档位或者模式的变速器运行过于频繁,并且此处描述的优选因数的偏差或者加权使不希望的频繁换档缓和。继新期望工作档位因数的产生和期望工作档位的选择之后,用于期望工作档位的NI值被评估用于选择,并且NI值可以基本上从一个时间间隔变化到下一个时间间隔是屡见不鲜的。因此理想的是“过滤”所述NI值以消除噪音,这些噪音包括在一个或多个短暂区间内NI值的瞬间波动所引起的大大超过或低于平均NI值的值。在一个实施例中,即使在给定的时间点仅实际使用了M1或者M2其中一个的所述值,即系统不断地提供用于M1和M2运行的NI值,用于M1运行、M2运行和空挡的NI值被过滤。在这种实施例中,当用于M1或者M2运行的输入速度NI被不断地提供时或者在选定的区间,只有与期望模式(M1或者M2)有关的输入速度NI被用于根据当前车辆工作状态形成期望变速器输入速度曲线。在进行了期望运行状态的选择之后,用于M1和M2的选定NI值被过滤以减少噪音,过滤时,当期望范围变化重置待转换到的期望范围模式的过滤,使得初始输出值相当于输入值,如图10所示。在其中描述的建议NI值最后将被用来根据期望范围形成期望输入速度曲线。例如,当M1被选为期望范围时,NI M1被用作期望NI曲线,同时M2变成将切换到建议NI M2的期望曲线。实行这样的选择重置,使得当系统从一个曲线切换到另一个曲线时,非过滤的建议NI被用作初始值。当为了噪声控制而过滤所述建议输入速度时,只有期望模式的建议输入速度被过滤。这允许所述建议输入速度当它的模式被选中时重置。\n[0056] 所述公开已经描述了某些优选方案及其变型。他人在阅读和理解说明书后可以想到另外的变型和修改。因此,本公开并不限于作为用于实施本公开的最佳方式的具体实施例,而是将包括所有落入附加权利要求书范围内的所有实施例。
法律信息
- 2021-10-19
未缴年费专利权终止
IPC(主分类): F16H 59/00
专利号: ZL 200810188799.6
申请日: 2008.11.04
授权公告日: 2013.12.18
- 2013-12-18
- 2010-01-06
- 2009-11-11
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有引用任何外部专利数据! |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |