著录项信息
专利名称 | 大电机绝缘状态在线诊断评估方法 |
申请号 | CN201010609194.7 | 申请日期 | 2010-12-28 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2011-07-27 | 公开/公告号 | CN102135593A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G01R31/12 | IPC分类号 | G;0;1;R;3;1;/;1;2;;;G;0;1;R;3;1;/;3;4;;;G;0;6;N;3;/;0;8查看分类表>
|
申请人 | 太原理工大学 | 申请人地址 | 山西省太原市迎泽西大街79号
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 太原理工大学 | 当前权利人 | 太原理工大学 |
发明人 | 宋建成;穆靖宇;吝伶艳;郑丽君;许春雨;田慕琴;温敏敏;刘杰 |
代理机构 | 太原市科瑞达专利代理有限公司 | 代理人 | 李富元 |
摘要
一种大电机绝缘状态在线诊断评估方法,目的是综合考虑振动、温度、湿度等电机工作环境因素对局部放电的影响,准确诊断评估绝缘状态;本发明方法先建立用于识别放电模式的神经网络,在MATLAB2007中搭建神经网络框架,从样本库中抽取样本训练神经网络;根据各环境因素对不同放电模式的作用关系,分别建立各种放电模式与对其影响的工作环境因素的关系模型;在大电机上安装各种传感器,采集数据;建立数据库;计算特征值;修正得到标准工作环境下的Qm值;从数据库中读取修正的Qm历史数据与当前的Qm修正值纵向比较,在同一设备三相之间和所有电机之间横向比较Qm,依据相应的规则,得出绝缘状况,提出绝缘故障诊断和评估结论。
1.一种大电机绝缘状态在线诊断评估方法,其特征是:
(1)建立用于识别放电模式的神经网络:制作内部放电、槽部放电、端部放电和完好的线棒模型,在6 kV、8 kV、10 kV、12 kV、15kV 下测量四种线棒模型的局部放电,根据IEEE Std 1434-2000 标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,对以上数据归一化,得到局部放电模式识别的样本库;
对数据归一化所使用的公式:
(Ⅰ)
式中,x为待处理数据、xmax为数据的最大值、xmin为数据的最小值、 为归一化的数据 ;
在MATLAB2007 中搭建神经网络框架,从样本库中抽取样本训练神经网络;以剩余样本作为测试样本,测试神经网络,若对各种放电模式的识别率达到要求值时,记录阀值或权值,否则重新训练直至识别率达到要求值;
(2)建立局部放电与对其影响的工作环境因素的关系模型:先准备多个不同老化程度的某一缺陷的线棒,在标准环境下测试局部放电,根据IEEE Std 1434-2000标准,计算最大放电量Qm,记录下标准环境下的Qm;然后,分级改变与这一局部放电模式相关的环境因素,得到局部放电Qm和对应的环境数值,再用局部放电Qm和对应的环境数值作为数据样本,以标准环境下的Qm作为目标,建立神经网络,对其进行训练,得到这一放电模式与对其影响的工作环境因素的神经网络关系模型;
根据各环境因素对不同放电模式的作用关系,分别建立各种放电模式与对其影响的工作环境因素的关系模型;对于内部放电,建立温度对其的关系模型;对于端部放电,建立湿度对其关系模型;对于槽部放电,建立振动对其关系模型;
(3)数据采集;在大电机上安装局部放电传感器、温度传感器、湿度传感器、振动传感器,采集局部放电、定子温度、空气湿度、定子振动数据 ;局部放电传感器与大电机高压母线相连,其他各传感器均安装在电机绕组上;
(4)建立数据库:数据库建有4个表,分别为电机静态数据表、在线监测数据表、Qm修正数据表和诊断评估结论表 ;电机静态数据表上保存有电机的型号、容量、额定电压、额定电流、绝缘等级、生产厂家、启用时间、所在区域、负责人信息的信息;在线监测数据表上保存局部放电各特征参数、振动幅度、定子温度、空气湿度的数据;Qm修正数据表上保存Qm的修正值;诊断评估结论表上保存诊断评估结论;
(5)计算特征值:对于局部放电信号,根据IEEE Std 1434-2000 标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,供识别放电模式;根据IEEE Std 1434-2000 标准,计算局部放电最大放电量Qm;对于定子温度信号和空气湿度信号,简单计算各自数值;对于定子振动信号,计算其振动幅值;把所有特征值存入步骤(4)建立的在线监测数据表中;
(6)修正得到标准工作环境下的Qm值 :对局部放电模式进行识别,以步骤(5)中计算的局放电六个极性特征值,作为神经网络的输入,使用步骤(1)建立的神经网络,识别放电模式;如果没有发生放电,直接得出结论“绝缘状态良好”,退出程序;否则,按下面步骤执行:
根据放电模式,选择与其相关的工作环境因素及其与局部放电Qm的关系模型,以步骤(5)得到的Qm和工作环境因素数值为输入,使用步骤(2)得出关系模型,得到Qm的修正值 ;把修正后的Qm值存入步骤(4)建立的Qm修正数据表中;
(7)诊断评估 :从数据库中读取修正的Qm历史数据与当前的Qm修正值纵向比较,在同一设备三相之间和所有电机之间横向比较Q m,依据相应的规则,得出绝缘状况,结合步骤(6)的局部放电模式识别结论,提出绝缘故障诊断和评估结论;把最终评估结论值存入步骤(4)建立的诊断评估结论表中。
2.如权利要求1 所述的大电机绝缘状态在线诊断评估方法,其特征是局部放电传感器采用80pF 耦合电容器,温度传感器采用定子温度PT100传感器,湿度传感器采用HIH-3610型湿度传感器,振动传感器采用振动位移传感器,温度传感器采用定子PT100 传感器。
大电机绝缘状态在线诊断评估方法\n技术领域\n[0001] 本发明涉及一种大电机在线监测和故障诊断评估方法。\n背景技术\n[0002] 大型电机在运行时,受到工作环境和电、热、机械的应力的长期作用,其绝缘性能逐渐老化、受损,最终导致绝缘事故,这类事故约占大电机故障的40%。因此,对大电机绝缘状态在线诊断评估,对提高大电机运行可靠性具有十分重要的现实意义。专利号为CN1402015A的发明专利《基于小波变换的电机绝缘老化诊断方法及其装置》,利用冲击源敲击大型发电机定子线棒的主绝缘表面,由声传感器接收所辐射的声波。对接收到的声信号进行小波变换,求取其在尺度1下的模极大值,通过该模极大值确定大型发电机主绝缘的老化状态。这种方法从绝缘老化过程中材料和结构发生本征变化的角度监测,有效地避免现场测试中的电磁干扰,但该方法需要敲击线棒绝缘,只适用于电机停机检修,不能实现在线监测。长期以来,国内外学者对大型电机绝缘的在线监测和诊断,特别是对局部放电的监测和分析作了大量的研究,目前已在实际应用中取得了很大的经济效益。西安交通大学的乐波于2002年9月在《中国电力》发表的“基于虚拟仪器技术的大型发电机局部放电在线监测系统”,介绍了一种局部放电在线监测系统,该系统可以有效地监测大型发电机运行过程中定子绝缘的局部放电,直观显示放电信息,但不能得出绝缘分析和诊断结论。上海交通大学的张毅刚于2004年9月在《高电压技术》发表的“发电机绝缘诊断专家系统的研究”,介绍了一种绝缘诊断专家系统,该系统以局部放电在线监测为基础,采用从分析到综合的分析思路,实现了发电机的绝缘诊断,该系统虽在综合评估中融合温度和振动传感器的数据,但未考虑工作环境数据对局部放电和主绝缘的影响,得到的局部放电数据不真实,不能准确评估绝缘状态。\n[0003] 综上所述,现有的大电机绝缘在线诊断评估方法仅对局部放电参数进行分析,没有考虑电机工作环境因素(振动、温度、湿度)对局部放电的影响。而局部放电易受工作环境的影响,在不同的工作环境下,相同绝缘的局部放电特征也会有明显的差异,对于不同的放电模式,工作环境因素对其作用又各不相同。因此,忽视工作环境因素的局部放电分析方法可靠性低,不能准确诊断评估绝缘状态。\n发明内容\n[0004] 本发明目的是为克服上述已有技术的不足,提供一种综合考虑振动、温度、湿度等电机工作环境因素对局部放电的影响,准确诊断评估绝缘状态的大电机绝缘状态在线诊断评估方法。\n[0005] 本发明的技术方案是:提供一种大电机绝缘状态在线诊断评估方法,建立工作环境对各种局部放电模式的关系模型,采集电机局部放电和工作环境数据,识别电机局部放电模式,再依据对应的关系模型,得到标准工作环境下的局部放电最大放电量Qm,通过纵向、横向比较Qm判断绝缘老化状态,结合模式识别结果,得出绝缘诊断评估结论。具体分为以下步骤:\n[0006] (1)建立用于识别放电模式的神经网络;制作内部放电、槽部放电、端部放电和完好的线棒模型,在6 kV、8 kV、10 kV、12 kV、15kV下测量四种线棒模型的局部放电,根据IEEE Std 1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,对以上数据归一化,得到局部放电模式识别的样本库;\n[0007] 对数据归一化处理所使用公式为: ;公式中,x为待处理数据、xmax为数据的最大值、xmin为数据的最小值、 为归一化的数据;\n[0008] 在MATLAB2007中搭建神经网络框架,从样本库中抽取样本训练神经网络;以剩余样本作为测试样本,测试神经网络;若对各种放电模式的识别率都很高,记录神经网络的阈值和权值,完成本步骤;否则,重新训练直至很高的识别率。\n[0009] (2)建立局部放电与对其影响的工作环境因素的关系模型;先准备多个不同老化程度的某一缺陷的线棒,在标准环境下测试局部放电,根据IEEE Std 1434-2000标准,计算最大放电量Qm,记录下标准环境下的Qm;然后,分级改变与这一局部放电模式相关的环境因素,得到局部放电Qm和对应的环境数值,再用局部放电Qm和对应的环境数值作为数据样本,以标准环境下的Qm作为目标,建立神经网络,对其进行训练,得到这一放电模式与对其影响的工作环境因素的神经网络关系模型;\n[0010] 根据各环境因素对不同放电模式的作用关系,分别建立各种放电模式与对其影响的工作环境因素的关系模型。对于内部放电,建立温度对其的关系模型;对于端部放电,建立湿度对其关系模型;对于槽部放电,建立振动对其关系模型。\n[0011] (3)数据采集;在大电机上安装局部放电传感器、温度传感器、湿度传感器、振动传感器,采集局部放电、定子温度、空气湿度、定子振动数据;局部放电传感器与大电机高压母线相连,其他各传感器均安装在电机绕组上。\n[0012] 局部放电传感器采用80pF耦合电容器,温度传感器采用定子温度PT100传感器,湿度传感器采用HIH-3610型湿度传感器,振动传感器采用振动位移传感器,温度传感器采用定子PT100传感器;大部分电机出厂时已配有温度传感器,不重复安装;\n[0013] (4)建立数据库;数据库建有4个表,分别为电动机静态数据表、在线监测数据表、Qm修正数据表和诊断评估结论表。电机静态数据表,保存有电动机的型号、容量、额定电压、额定电流、绝缘等级、生产厂家、启用时间、所在区域、负责人信息等信息;在线监测数据表,用于保存局部放电各特征参数、振动幅度、定子温度、空气湿度等数据;Qm修正数据表用于保存Qm的修正值;诊断评估结论表用于保存诊断评估结论。\n[0014] (5)计算特征值;对于局部放电信号,根据IEEE Std 1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,供识别放电模式用;根据IEEE Std 1434-2000标准,计算局部放电最大放电量Qm。对于定子温度信号和空气湿度信号,简单计算各自数值。对于定子振动信号,计算其振动幅值。把所有特征值存入步骤(4)建立的在线监测数据表中。\n[0015] (6)修正得到标准工作环境下的Qm值;对局部放电模式进行识别,以步骤(5)中计算的局放电六个极性特征值,作为神经网络的输入,使用步骤(1)建立的神经网络,识别放电模式。\n[0016] 如果没有发生放电,直接得出结论“绝缘状态良好”,退出程序;否则,按下面步骤执行。根据放电模式,选择与其相关的工作环境因素及其与局部放电Qm的关系模型,以步骤(5)得到的Qm和工作环境因素数值为输入,使用步骤(2)得出关系模型,得到 Qm的修正值。\n把修正后的Qm值存入步骤(4)建立的 Qm修正数据表中。\n[0017] (7)诊断评估;从数据库中读取修正的Qm历史数据与当前的 Qm修正值纵向比较,在同一设备三相之间和所有电机之间横向比较Qm,依据相应的规则,得出绝缘状况,结合步骤(6)的局部放电模式识别结论,提出绝缘故障诊断和评估结论。把最终评估结论值存入步骤(4)建立的诊断评估结论表中。\n[0018] 本发明应用于大电机绝缘状态的在线诊断。建立了工作环境对各种局部放电模式的关系模型,消除了工作环境因素对Qm的影响,得到准确的绝缘诊断评估参数;通过纵向、横向比较Qm得出绝缘老化状态,避免了直接使用Qm阈值评估绝缘不客观、不准确的问题;本方法实现了大电机绝缘的在线诊断,能够准确、客观地对大电机绝缘作出诊断评估。\n附图说明\n[0019] 图1为大电机绝缘在线评估诊断方法的流程图;\n[0020] 图2为修正得到标准工作环境下的Qm值的流程图。\n具体实施方式\n[0021] 本发明建立工作环境对各种局部放电模式的关系模型,采集电机局部放电和工作环境数据,识别电机局部放电模式,再依据对应的关系模型,得到标准工作环境下的局部放电最大放电量Qm,通过纵向、横向比较Qm评估绝缘老化状态,结合模式识别结果,得出绝缘诊断评估结论。\n[0022] (1)建立用于识别放电模式的神经网络:首先,制作内部放电、槽部放电、端部放电和完好无缺陷的线棒模型。利用与实际线棒相同的材料和制作工艺,制作了电机内部放电、槽部放电、端部放电三种典型的放电模型和完好线棒模型,每种模型制作2个。完好线棒模型导体使用含银铜母线,其尺寸为:1000mm×28mm×5mm;主绝缘层由环氧玻璃云母带多层包绕而成,云母带的宽度和厚度分别为25mm和0.14mm;防晕层长450mm,由防晕带在绝缘层上包绕形成,防晕带为半导体材料,低阻带和高阻带的长度分别为300mm和95mm,搭接部分长20mm。经过机包主绝缘、手绕防晕层、热压(170℃,1h)和烘烤(170℃,10h)后成型。在内部放电模型的绝缘层中预埋四氟乙烯,制造有人工气隙;端部放电模型没有防晕层;将完好线棒放置在接地钢板上,其间留有0.3mm的缝隙,构成槽部放电模型。然后,测量四种线棒模型的局部放电,计算特征值,建立模式识别样本。局部放电测量在屏蔽实验室进行,在6kV-15kV的5级电压下测试4种模型的局部放电,使用DEWE-2012数据采集仪进行采集,每个电压等级下采集2个样本,每个样本采集100个工频周期的数据。采集完成后,进入到计算机分析,根据IEEE Std 1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,作为模式识别的一组特征量,数据经归一化处理后,构成80组局部放电模式识别样本。\n[0023] 最后,建立神经网络。使用MATLAB2007训练神经网络,用newff函数创建BP神经网络,网络参数设置如下:神经网络模型为3层,输入层6个节点,中间层5个节点,输出层\n4个节点,神经元传递函数选用tansig函数,输出层传递函数为logsig函数,训练方法选用trainglm函数,训练10000次,精度为0.01。从样本库里抽取64组样本(每种模型16组),将样本数据转化成4×32的矩阵作为train函数的输入参数,运行train函数进行训练,当达到精度或训练步数时,训练结束。训练结束后,系统自动生成一个神经网络模型,得到各层权值、阈值。以剩余16组样本作为测试样本,将样本数据转化成4×8的矩阵,使用sim函数测试神经网络,经过sim函数计算后,得到识别结果。若对各种放电模型的识别率都很高,记录神经网络的阈值和权值,完成本步骤;否则,重新训练直至很高的识别率。\n[0024] (2)建立工作环境因素与局部放电Qm的关系模型:电机工作环境的变化会导致局部放电Qm的变化,只有得到标准工作环境下的局部放电 Qm对绝缘评估才有意义。而对于不同的放电模式,工作环境因素(温度、湿度、振动)对其的影响各不相同。对于内部放电,温度对其有着很大的影响,随着温度的升高,定子绝缘发生冷缩热胀效应,气隙体积出现数量级的减小,导致局部放电水平的降低;而空气湿度、定子振动对其相关性不大。对于端部放电,湿度的降低会导致表面防晕层电阻的增大,更容易聚集更多的电荷,形成放电;温度和定子振动对其关系不大。对于槽部放电,振动幅度越大,槽放电局部放电放电量越大。当线棒与定子槽有气隙时,温度的升高将导致局部放电放电量的增大;由此可见,在建立工作环境与局部放电关系模型时,一定要根据不同放电模式,分别建立其与工作环境各因素的关系。此外,建立多个工作环境因素与某种模式的局部放电的关系需要大量人力、物力,而有些工作环境因素对某种模式的局部放电的作用不大,因此,只需建立某一放电模式及与其相关性较大的某一工作环境因素的关系模型即可。对于内部放电,湿度、振动对其相关性不大,而温度对其有很大的影响,需要建立内部放电与温度的关系模型;对于端部放电,建立湿度与其关系模型;对于槽部放电,建立振动与其关系模型。下面叙述建立内部放电与温度的关系模型的方法。\n[0025] 建立内部放电与温度的关系模型的方法为:\n[0026] 准备多个不同老化程度的端部缺陷的线棒,也可对步骤(1)制作的端部缺陷的线棒在实验室加速老化,加速线棒老化实验方法参见本发明人发表的1999年西安交通大学博士学位论文《大电机主绝缘多因子老化特征参量的研究》。设标准工作环境为温度\n10℃、湿度50%、振动幅值1000μm,在标准工作环境下,测量线棒的局部放电,根据IEEE Std 1434-2000标准,计算局部放电最大放电量Qm。保持其他条件不变,分级改变温度,从\n10℃-100℃,测试各温度下的局部放电,记录Qm和对应的温度。建立温度与内部放电关系的神经网络模型,神经网络模型为3层,输入层2个节点,中间层2个节点,输出层1个节点,神经元传递函数选用tansig函数,输出层传递函数为logsig函数,训练方法选用trainglm函数,训练1000次,精度为0.01。以局部放电Qm和对应的温度作为神经网络的输入,标准工作环境下的局部放电Qm作为教师目标,对神经网络进行训练,训练方法同步骤(1)。如此,得到温度与内部放电的神经网络模型。如果知道某一温度下的局部放电Qm,把温度和Qm输入该神经网络,神经网络就能输出标准工作环境下的局部放电Qm。\n[0027] 端部放电与湿度的关系模型、槽部放电与振动的关系模型的建立方法与以上基本相同。步骤(1)、(2)是在大电机绝缘在线诊断评估前的准备工作,下面步骤为在线诊断评估部分。\n[0028] (3)数据采集:在大电机上安装局部放电传感器、温度传感器、湿度传感器、振动传感器,采集局部放电、定子温度、空气湿度、定子振动信号;使用80pF耦合电容传感器与大电机高压母线相连,拾取局部放电信号;使用定子温度PT100传感器,测量定子温度,大部分电机出厂时已配有温度定子PT100传感器;使用HIH-3610型湿度传感器,测量空气湿度;\n使用振动位移传感器,测量定子振幅。\n[0029] (4)建立数据库:数据库建有4个表,分别为电动机静态数据表、在线监测数据表、Qm修正数据表和诊断评估结论表。电机静态数据表,保存有电动机的型号、容量、额定电压、额定电流、绝缘等级、生产厂家、启用时间、所在区域、负责人信息等信息;在线监测数据表,用于保存局部放电各特征参数、振动幅度、定子温度、空气湿度等数据;Qm修正数据表用于保存Qm的修正值;诊断评估结论表用于保存诊断评估结论。\n[0030] (5)计算特征值:对于局部放电信号,根据IEEE Std 1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,供步骤(6)识别放电模式;根据IEEE Std \n1434-2000标准,计算局部放电最大放电量Qm。对于定子温度信号,空气湿度信号,简单计算各自数值。对于定子振动信号,计算其振动幅值。把所有特征值存入步骤(4)建立的在线监测数据表中。\n[0031] (6)修正得到标准工作环境下的Qm值:首先,识别局部放电模式,以步骤(5)中计算的局放电六个极性特征值,作为神经网络的输入,使用步骤(1)建立的神经网络,识别放电模式。如果没有发生放电,直接得出结论“绝缘状态良好”,退出程序;否则,按下面步骤执行。然后,根据放电模式,选择与其相关的工作环境因素及其与局部放电Qm的关系模型,以步骤(5)得到的Qm和工作环境因素数值为输入,使用步骤(2)得出关系模型,得到 Qm的修正值。把修正后的Qm值存入步骤(4)建立的 Qm修正数据表中。\n[0032] (7)诊断评估:由于使用不同的局部放电传感器和信号线长度,同样绝缘测得的Qm值也会不同,直接使用Qm值不能保证绝缘状态评估的客观性、准确性,采用趋势分析和横向比较的方法能够有效得出绝缘状况。\n[0033] 从数据库中读取修正的Qm历史数据,与当前的 Qm修正值相比较,得到局部放电的发展趋势,判断绝缘状况。部分规则如下:如果本次局部放电量比较低且发展平稳,则绝缘良好;如果半年内小于25%的增长,则认为绝缘一般;如果比一年前数据大一倍以上,则认为绝缘恶化。如果Qm在短时内迅速增大,可能是偶然原因造成的绝缘劣化,如大气过电压、电弧放电等。在同一设备三相检测的局部放电Qm之间进行比较,若有一相高于其它相达一倍以上时,则认为该相很可能存在缺陷;与其他电动机作比较,若差别悬殊就可能存在问题。\n[0034] 结合步骤(6)的局部放电模式识别结论,提出绝缘故障诊断和评估结论。如:局部放电模式识别结果为“W相存在内部放电”、诊断评估结论为“W相绝缘一般”,那么,最终的结论为“W相绝缘状态一般,绝缘发生内部放电,发展稳定,有可能进一步侵蚀绝缘材料,形成绝缘分层、剥离。”
法律信息
- 2016-01-20
- 2013-12-18
实质审查的生效
IPC(主分类): G01R 31/12
专利申请号: 201010609194.7
申请日: 2010.12.28
- 2011-07-27
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2009-04-15
|
2008-11-21
| | |
2
| | 暂无 |
2000-08-21
| | |
3
| |
2005-05-04
|
2004-04-30
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |