著录项信息
专利名称 | 基于身份证件信息和人脸多重特征识别的身份验证方法 |
申请号 | CN201510047655.9 | 申请日期 | 2015-01-29 |
法律状态 | 授权 | 申报国家 | 中国 |
公开/公告日 | 2015-06-03 | 公开/公告号 | CN104680131A |
优先权 | 暂无 | 优先权号 | 暂无 |
主分类号 | G06K9/00 | IPC分类号 | G;0;6;K;9;/;0;0;;;G;0;6;K;9;/;6;2查看分类表>
|
申请人 | 深圳云天励飞技术有限公司 | 申请人地址 | 广东省深圳市龙岗区横岗街道龙岗大道8288号深圳大运软件小镇17栋2楼
变更
专利地址、主体等相关变化,请及时变更,防止失效 |
权利人 | 深圳云天励飞技术有限公司 | 当前权利人 | 深圳云天励飞技术有限公司 |
发明人 | 田第鸿;陈宁 |
代理机构 | 深圳市中联专利代理有限公司 | 代理人 | 李俊 |
摘要
本发明公开了一种基于身份证件信息和人脸多重特征识别的身份验证方法及系统,方法包括:(a)获取身份证件关联的人脸图像和身份信息,并进一步获取证件所属人的性别、年龄信息;(b)采集证件持有人的现场高清人脸图像;(c)判断现场高清人脸图像的性别,并计算与证件所属人的性别匹配度;(d)评估现场高清人脸图像的年龄,并计算与证件所属人的年龄匹配度;(e)比较现场高清人脸图像与身份证件关联人脸图像,获取人脸匹配度;(f)综合人脸匹配度、性别匹配度和年龄匹配度,进行身份判定,获取身份验证结果。本发明是一种综合利用身份证件关联的身份信息与现场采集的高清人脸图像,实现更高准确率的身份验证方法及系统。
1.一种基于身份证件信息和人脸多重特征识别的身份验证方法,其特征在于,包括:
(a)身份证件信息获取步骤,获取身份证件关联的人脸图像和身份信息,所述身份信息包括证件所属人的性别、年龄信息;其中人脸图像通过读取证件内存储的低清人脸图像,或通过网络获取原始身份证件照片;
(b)现场人脸图像采集步骤,采集证件持有人的现场高清人脸图像;
(c)性别识别步骤,判断现场高清人脸图像的性别,并计算与证件所属人的性别匹配度;
(d)年龄识别步骤,评估现场高清人脸图像的年龄,并计算与证件所属人的年龄匹配度;
(e)人脸识别步骤,比较现场高清人脸图像与身份证件关联人脸图像,获取人脸匹配度;
(f)身份判定步骤,综合人脸匹配度、性别匹配度和年龄匹配度,进行身份判定,获取身份验证结果;
其中,步骤(d)还包括:通过从身份证件中获取的性别信息提高年龄识别的精度,并通过不同性别的人脸训练数据,分别生成针对男性的年龄函数和针对女性的年龄函数,如果从身份证件中获取的性别信息为男性,则采用男性的年龄函数,反之则采用女性的年龄函数;
在步骤(d)中,通过年龄识别,对高清人脸图像进行年龄估计,从而得到一个估计的现场高清人脸图像与身份证件人脸图像的年龄差距,基于该年龄差距,通过年龄变换,将低清人脸图像进行上采样,再利用基于人脸特征点的形状变化函数得到目标年龄的人脸形状,通过基于Gabor滤波从高清人脸图像中提取纹理特征,叠加后获取目标年龄的人脸重构图像,再将所述目标年龄的人脸重构图像与下采样后的高清人脸图像进行人脸比对,获得年龄匹配度。
2.如权利要求1所述的身份验证方法,其特征在于,在步骤(e)中,从身份证件读卡器获取的低清人脸图像与现场采集的高清人脸图像通过人脸检测定位人脸,对检测到的人脸进行人脸对比识别,获得人脸匹配度。
3.如权利要求1所述的身份验证方法,其特征在于,所述人脸匹配度、性别匹配度和年龄匹配度均表示为概率结果,以F、S、A分别代表上述结果,则0≤F≤1,0≤S≤1,0≤A≤1,综合三个匹配度结果获得最终的身份验证结果,其中所述综合三个匹配度结果的方式为三个匹配度的乘积,即:T=F*S*A,若T>预定义门限,则身份验证通过,否则身份验证未通过,且还可以调整该三个匹配度在身份验证结果中的作用。
4.如权利要求1所述的身份验证方法,其特征在于,在步骤(c)中,性别识别可利用不同性别的人脸训练数据,通过线性判决分析(Linear Discriminant Analysis)提取最具有判决特性的人脸特征,也可以通过对人脸图像预处理,提取对性别识别重要的人脸特征,由主成分分析的方法进行特征向量的选择,再通过训练支持向量机(Support Vector Machine)分类器实现性别识别,其中人脸特征包含整体特征和局部特征。
5.如权利要求1所述的身份验证方法,其特征在于,在步骤(e)中,可通过包含同一人脸在不同年龄段照片的训练数据集,提取不随年龄变化的人脸特征,通过训练支持向量机或神经网络等方法实现高准确度的人脸匹配。
6.一种基于身份证件信息和人脸多重特征识别的身份验证系统,其特征在于,包括:
身份证件信息获取模块,用于获取身份证件关联的人脸图像和身份信息,所述身份信息包括证件所属人的性别、年龄信息;其中人脸图像通过读取证件内存储的低清人脸图像,或通过网络获取原始身份证件照片;
现场人脸图像采集模块,用于采集证件持有人的现场高清人脸图像;
性别识别模块,用于判断现场高清人脸图像的性别,并计算与证件所属人的性别匹配度;
年龄识别模块,用于评估现场高清人脸图像的年龄,并计算与证件所属人的年龄匹配度;
人脸识别模块,用于比较现场高清人脸图像与身份证件关联人脸图像,获取人脸匹配度;
身份判定模块,用于综合人脸匹配度、性别匹配度和年龄匹配度,进行身份判定,获取身份验证结果;
其中,所述年龄识别模块还用于通过从身份证件中获取的性别信息提高年龄识别的精度,并通过不同性别的人脸训练数据,分别生成针对男性的年龄函数和针对女性的年龄函数,如果从身份证件中获取的性别信息为男性,则采用男性的年龄函数,反之则采用女性的年龄函数;
年龄识别模块用于通过年龄识别,对高清人脸图像进行年龄估计,从而得到一个估计的现场高清人脸图像与身份证件人脸图像的年龄差距,基于该年龄差距,通过年龄变换,将低清人脸图像进行上采样,再利用基于人脸特征点的形状变化函数得到目标年龄的人脸形状,通过基于Gabor滤波从高清人脸图像中提取纹理特征,叠加后获取目标年龄的人脸重构图像,再将所述目标年龄的人脸重构图像与下采样后的高清人脸图像进行人脸比对,获得年龄匹配度。
7.如权利要求6所述的身份验证系统,其特征在于,人脸识别模块用于从身份证件读卡器获取的低清人脸图像与现场采集的高清人脸图像通过人脸检测定位人脸,对检测到的人脸进行人脸对比识别,获得人脸匹配度。
8.如权利要求6所述的身份验证系统,其特征在于,所述人脸匹配度、性别匹配度和年龄匹配度均表示为概率结果,以F、S、A分别代表上述结果,则0≤F≤1,0≤S≤1,0≤A≤1,综合三个匹配度结果获得最终的身份验证结果,其中所述综合三个匹配度结果的方式为三个匹配度的乘积,即:T=F*S*A,若T>预定义门限,则身份验证通过,否则身份验证未通过,且还可以调整该三个匹配度在身份验证结果中的作用。
9.如权利要求8所述的身份验证系统,其特征在于,性别识别模块用于利用不同性别的人脸训练数据,通过线性判决分析(Linear Discriminant Analysis)提取最具有判决特性的人脸特征,也可以通过对人脸图像预处理,提取对性别识别重要的人脸特征,由主成分分析的方法进行特征向量的选择,再通过训练支持向量机(Support Vector Machine)分类器实现性别识别,其中人脸特征包含整体特征和局部特征。
10.如权利要求8所述的身份验证系统,其特征在于,人脸识别模块用于通过包含同一人脸在不同年龄段照片的训练数据集,提取不随年龄变化的人脸特征,通过训练支持向量机或神经网络等方法实现高准确度的人脸匹配。
基于身份证件信息和人脸多重特征识别的身份验证方法\n技术领域\n[0001] 本发明涉及身份识别技术领域,尤其涉及一种综合利用身份证件关联的身份信息与现场采集的高清人脸图像,实现更高准确率的基于身份证件信息和人脸多重特征识别的身份验证方法及系统。\n背景技术\n[0002] 现有基于人脸识别的二代身份证验证仅仅采用身份证内存储的人脸图像,通过与现场采集的人脸图像进行比对达到身份验证的目的(即,判断身份证件持有人与证件所属人是否为同一人)。由于二代证内存储的人脸图像分辨率较低(102x126像素),同时证内存储照片与现场采集照片的时间跨度可能较大,仅仅通过对比证内存储的人脸图像与现场采集的人脸图像实现身份验证,在准确率上受到限制。即使在能够通过网络获取高清晰度、原始身份证照片的场景下,由于时间跨度等带来的人脸外貌差距,也仍然对单纯基于人脸比对的身份验证带来困难。另一方面,通过从身份证件中读取的身份关联信息,比如,二代身份证中的身份证号码,可以提取出证件所属人的性别和出生日期等信息,从而间接得到证件所属人的年龄信息。\n[0003] 目前第二代居民身份证在全国范围内已经普及,由于二代证采用了非接触式IC智能芯片来存储身份证唯一编号、人脸图像和其它基本身份信息,使得结合二代证上身份信息的应用逐步推广开来。基于二代证中照片的人脸识别成为近年来兴起的一种新应用,其技术方案通常为:(1)通过二代身份证读卡器,读取二代身份证中存储的人脸图像,(2)通过现场安装的摄像头采集证件持有人的人脸图像,以及(3)通过人脸特征提取与模式识别算法,比较二代证存储的人脸图像与现场采集人脸图像的相似度,判定证内照片与现场图像是否为同一人。\n[0004] 中国专利文件CN202472696U公开了一种基于二代身份证和人脸特征识别的身份验证系统。该系统采用小波变换对证内人脸图像和现场人脸图像进行特征提取,采用支持向量机对提取的图像特征进行比对,依据相似度实现身份判定。\n[0005] 中国专利文件CN102902959A公开了一种基于二代身份证存储证件照的人脸识别方法与系统。针对证内存储照片与现场采集图像在分辨率上的差异,该方法采用人脸局部特征与整体特征相结合的方式进行人脸图像的比对,以提高身份判定的准确度。\n[0006] 现有技术的一个共同缺点为仅基于二代身份证存储的人脸图像与现场人脸图像进行身份验证。由于二代证内存储的人脸图像分辨率较低(102x126像素),同时证内存储照片与现场采集照片的时间跨度可能较大,仅仅通过对比证内存储的人脸图像与现场采集的人脸图像实现身份验证,在准确率上受到限制。尽管现场采集的人脸图像可以达到高分辨率,但由于需要与低分辨率的证内照片进行比对,其信息量并未得到充分利用。事实上,现有技术往往在对高清人脸图像降低采样率后进行特征提取,以实现与身份证内低清人脸图像的比对。即使在能够通过网络获取高清晰度、原始身份证照片的场景下,由于时间跨度等带来的人脸外貌差距,也仍然对单纯基于人脸比对的身份验证带来困难。\n[0007] 通过身份证件读取设备,可以读取除人脸图像外的其它信息。比如,二代身份证号码第7-14位标明的是身份证所属人员的出生年月日,倒数第2位是性别识别码。因此,通过身份证号码,可以提取证件所属人的性别和出生年月,从而间接获取证件所属人的年龄信息。另一方面,通过对现场高清人脸图像进行多重特征分析,可以有效估计证件持有人的性别与年龄。通过综合分析上述信息,可以更准确的判定证件持有人是否为证件所属人。现有技术均没有考虑上述信息。\n[0008] 如何综合利用身份证件关联的身份信息与现场采集的高清人脸图像,实现更高准确率的身份验证,是本发明所要解决的技术问题。\n发明内容\n[0009] 本发明的目的之一是提供一种综合利用身份证件关联的身份信息与现场采集的高清人脸图像,实现更高准确率的基于身份证件信息和人脸多重特征识别的身份验证方法。\n[0010] 本发明的目的之二是提供一种综合利用身份证件关联的身份信息与现场采集的高清人脸图像,实现更高准确率的基于身份证件信息和人脸多重特征识别的身份验证系统。\n[0011] 为了实现上述目的之一,本发明公开了一种基于身份证件信息和人脸多重特征识别的身份验证方法,包括:\n[0012] (a)身份证件信息获取步骤,获取身份证件关联的人脸图像和身份信息,并进一步获取证件所属人的性别、年龄信息;\n[0013] (b)现场人脸图像采集步骤,采集证件持有人的现场高清人脸图像;\n[0014] (c)性别识别步骤,判断现场高清人脸图像的性别,并计算与证件所属人的性别匹配度;\n[0015] (d)年龄识别步骤,评估现场高清人脸图像的年龄,并计算与证件所属人的年龄匹配度;\n[0016] (e)人脸识别步骤,比较现场高清人脸图像与身份证件关联人脸图像,获取人脸匹配度;\n[0017] (f)身份判定步骤,综合人脸匹配度、性别匹配度和年龄匹配度,进行身份判定,获取身份验证结果。\n[0018] 在步骤(a)中,其中人脸图像通过读取证件内存储的低清人脸图像,或通过网络获取原始身份证件照片、护照照片的场景。\n[0019] 在步骤(e)中,从身份证件读卡器获取的低清人脸图像与现场采集的高清人脸图像通过人脸检测定位人脸,对检测到的人脸进行人脸对比识别,获得人脸匹配度。\n[0020] 所述人脸匹配度、性别匹配度和年龄匹配度均表示为概率结果,以F、S、A分别代表上述结果,则0≤F≤1,0≤S≤1,0≤A≤1,综合三个匹配度结果获得最终的身份验证结果,其中一种综合的方式为三个匹配度的乘积,即:T=F*S*A,若T>预定义门限,则身份验证通过,否则身份验证未通过,且还可以调整该三个匹配度在身份验证结果中的作用。\n[0021] 在步骤(c中),性别识别可利用不同性别的人脸训练数据,通过线性判决分析(Linear Discriminant Analysis)提取最具有判决特性的人脸特征,也可以通过对人脸图像预处理,提取对性别识别重要的人脸特征,由主成分分析的方法进行特征向量的选择,再通过训练支持向量机(Support Vector Machine)分类器实现性别识别。其中人脸特征可能包含整体特征,如通过类Haar基提取的整体特征,和局部特征,如通过局域二值模式(Local Binary Pattern)提取的反映局部人脸形状及纹理的特征。\n[0022] 在步骤(e)中,可通过包含同一人脸在不同年龄段照片的训练数据集,提取不随年龄变化的人脸特征,人脸形状特征和眼、鼻、嘴部特征,通过训练支持向量机或神经网络等方法实现高准确度的人脸匹配。\n[0023] 在步骤(d)中,通过从身份证件中获取的性别信息提高年龄识别的精度,可以通过不同性别的人脸训练数据,分别生成针对男性的年龄函数和针对女性的年龄函数,如果从身份证中获取的性别信息为男性,则采用男性的年龄函数,反之则采用女性的年龄函数。\n[0024] 在步骤(d)中,通过年龄识别,对高清人脸图像进行年龄估计,从而得到一个估计的现场高清人脸图像与身份证件人脸图像的年龄差距,基于该年龄差距,通过年龄变换,将低清人脸图像进行上采样,再利用基于人脸特征点的形状变化函数得到目标年龄的人脸形状,通过基于Gabor滤波从高清人脸图像中提取纹理特征,叠加后获取目标年龄的人脸重构图像,再将年龄变换后的低清人脸图像与下采样后的高清人脸图像进行人脸比对,获得人脸匹配度。\n[0025] 为了实现上述目的之二,本发明提供的技术方案为:提供一种基于身份证件信息和人脸多重特征识别的身份验证系统,其特征在于,包括:\n[0026] 身份证件信息获取模块,用于获取身份证件关联的人脸图像和身份信息,并进一步获取证件所属人的性别、年龄信息;\n[0027] 现场人脸图像采集模块,用于采集证件持有人的现场高清人脸图像;\n[0028] 性别识别模块,用于判断现场高清人脸图像的性别,并计算与证件所属人的性别匹配度;\n[0029] 年龄识别模块,用于评估现场高清人脸图像的年龄,并计算与证件所属人的年龄匹配度;\n[0030] 人脸识别模块,用于比较现场高清人脸图像与身份证件关联人脸图像,获取人脸匹配度;\n[0031] 身份判定模块,用于综合人脸匹配度、性别匹配度和年龄匹配度,进行身份判定,获取身份验证结果。\n[0032] 身份证件信息获取模块中,其中人脸图像通过读取证件内存储的低清人脸图像,或通过网络获取原始身份证件照片、护照照片的场景。\n[0033] 人脸识别模块用于从身份证件读卡器获取的低清人脸图像与现场采集的高清人脸图像通过人脸检测定位人脸,对检测到的人脸进行人脸对比识别,获得人脸匹配度。\n[0034] 所述人脸匹配度、性别匹配度和年龄匹配度均表示为概率结果,以F、S、A分别代表上述结果,则0≤F≤1,0≤S≤1,0≤A≤1,综合三个匹配度结果获得最终的身份验证结果,其中一种综合的方式为三个匹配度的乘积,即:T=F*S*A,若T>预定义门限,则身份验证通过,否则身份验证未通过,且还可以调整该三个匹配度在身份验证结果中的作用。\n[0035] 性别识别模块用于利用不同性别的人脸训练数据,通过线性判决分析(Linear Discriminant Analysis)提取最具有判决特性的人脸特征,也可以通过对人脸图像预处理,提取对性别识别重要的人脸特征,由主成分分析的方法进行特征向量的选择,再通过训练支持向量机(Support Vector Machine)分类器实现性别识别。其中人脸特征可能包含整体特征,如通过类Haar基提取的整体特征,和局部特征,通过局域二值模式(Local Binary Pattern)提取的反映局部人脸形状及纹理的特征。\n[0036] 人脸识别模块用于通过包含同一人脸在不同年龄段照片的训练数据集,提取不随年龄变化的人脸特征,人脸形状特征和眼、鼻、嘴部特征,通过训练支持向量机或神经网络等方法实现高准确度的人脸匹配。\n[0037] 年龄识别模块用于通过从身份证件中获取的性别信息提高年龄识别的精度,可以通过不同性别的人脸训练数据,分别生成针对男性的年龄函数和针对女性的年龄函数,如果从身份证件中获取的性别信息为男性,则采用男性的年龄函数,反之则采用女性的年龄函数。\n[0038] 年龄识别模块用于通过年龄识别,对高清人脸图像进行年龄估计,从而得到一个估计的现场高清人脸图像与身份证件人脸图像的年龄差距,基于该年龄差距,通过年龄变换,将低清人脸图像进行上采样,再利用基于人脸特征点的形状变化函数得到目标年龄的人脸形状,通过基于Gabor滤波从高清人脸图像中提取纹理特征,叠加后获取目标年龄的人脸重构图像,再将年龄变换后的低清人脸图像与下采样后的高清人脸图像进行人脸比对,获得人脸匹配度。\n[0039] 与现有技术相比,本发明提出了基于身份证件信息和人脸多重特征识别的身份验证方法及系统,具体而言,本发明利用身份证存储的低清人脸图像以及从文字信息中获取的性别年龄信息,通过对现场采集的高清人脸图像进行包括性别、年龄在内的多重特征识别,进行综合分析,从而提高身份验证的准确率。本发明的关键在于利用二代身份证中存储的人脸和性别、年龄等信息,对现场采集的高清人脸图像进行多重特征分析,包括对高清人脸图像的性别识别、年龄识别,以及高清人脸图像与身份证存储的低清人脸图像的比对,最后通过对匹配度的综合实现身份验证,对于具体的性别识别,年龄识别,以及人脸比对,则并不限于采用某一种方法。\n[0040] 通过以下的描述并结合附图,本发明将变得更加清晰,这些附图用于解释本发明的实施例。\n附图说明\n[0041] 图1所示为基于身份证件信息和人脸多重特征识别的身份验证方法的一个实施例的流程框图。\n[0042] 图2所示为基于身份证件信息和人脸多重特征识别的身份验证方法的一个实施例的流程框图。\n[0043] 图3所示为基于身份证件信息和人脸多重特征识别的身份验证系统的模块图。\n具体实施方式\n[0044] 现在参考附图描述本发明的实施例,附图中类似的元件标号代表类似的元件。如上所述,如图1所示的实施例中,本发明提出了一种基于身份证件信息和人脸多重特征识别的身份验证方法。具体而言,本发明利用身份证中存储的人脸图像以及从文字信息中获取的性别年龄信息,通过对现场采集的高清人脸图像进行包括性别、年龄在内的多重特征识别,进行综合分析,从而提高身份验证的准确率。\n[0045] 本发明实施例提供的技术方案包括:\n[0046] (a)获取身份证件关联的人脸图像和身份信息,并进一步获取证件所属人的性别、年龄信息;\n[0047] (b)采集证件持有人的现场高清人脸图像;\n[0048] (c)判断现场高清人脸图像的性别,并计算与证件所属人的性别匹配度;\n[0049] (d)评估现场高清人脸图像的年龄,并计算与证件所属人的年龄匹配度;\n[0050] (e)比较现场高清人脸图像与身份证件关联人脸图像,获取人脸匹配度;\n[0051] (f)综合人脸匹配度、性别匹配度和年龄匹配度,进行身份判定,获取身份验证结果。\n[0052] 一个实施例中,针对第二代居民身份证的身份验证。在本实施例中,可通过身份证读卡器获取身份证IC卡中存储的身份证照片和身份证号码,并通过身份证号码获取证件所属人的性别、年龄信息。比如,二代身份证号码第7-14位标明的是身份证所属人员的出生年月日,倒数第2位是性别识别码,通过提取证件所属人的出生年月,可以计算证件所属人在验证当时的年龄。\n[0053] 一个实施例中,针对第二代居民身份证的身份验证。其中证件照片通过读取证内存储的低清人脸照片,在此并非通过身份证读卡器获取身份证IC卡中存储的身份证照片和身份证号码,而是通过网络获取原始身份证照片的场景,以及其它身份证件如护照、驾驶证等证件的身份验证场景。\n[0054] 如图1所示的实施例中,从身份证读卡器获取的低清人脸图像与现场采集的高清人脸图像通过人脸检测定位人脸,对检测到的人脸进行人脸对比识别,获得人脸匹配度。同时,对高清人脸图像进行性别与年龄识别,并于从身份证中获取的性别、年龄信息进行比对,获得性别匹配度与年龄匹配度;并对人脸匹配度、性别匹配度和年龄匹配度进行身份判定,而在身份判定步骤中,根据预先定义的判决标准输出身份验证结果。\n[0055] 如图1所示的实施例中,人脸匹配度、性别匹配度和年龄匹配度均表示为概率结果,如果以F,S,A分别代表上述结果,则0≤F≤1,0≤S≤1,0≤A≤1。对身份进行综合判定,而判定结果获得最终的身份验证结果。具体地,一种综合的方式为三个匹配度的乘积,即:T=F*S*A,若T>预定义门限,则身份验证通过,否则身份验证未通过。此外,还可以有其它综合方式可以用来调整不同匹配度在身份验证结果中的作用,比如:T=F*S*A2,可用来降低当性别匹配度较低时的身份验证通过率;T=F*Sx*A,x<1,则可用来降低年龄匹配度在总体判定中的权重。也即是说,可以根据具体情况,适当提高或者降低三个匹配度中的任一个的权重。\n[0056] 性别识别可利用不同性别的人脸训练数据,通过线性判决分析(Linear Discriminant Analysis)提取最具有判决特性的人脸特征,也可以通过对人脸图像预处理,提取对性别识别重要的人脸特征,由主成分分析的方法进行特征向量的选择,再通过训练支持向量机(Support Vector Machine)分类器实现性别识别。其中人脸特征可能包含整体特征,如通过类Haar基提取的整体特征,和局部特征,如通过局域二值模式(Local Binary Pattern)提取的反映局部人脸形状及纹理的特征。\n[0057] 类似的,年龄识别步骤中,可以通过不同年龄段人脸的训练数据,通过局域二值模式提取人脸纹理特征,由主成分分析的方法进行特征向量的选择,然后送入支持向量机回归函数中进行训练,得到全局的年龄函数,从而建立人脸纹理特征与年龄的对应关系。\n[0058] 人脸识别步骤中,则可以通过包含同一人脸在不同年龄段照片的训练数据集,提取不随年龄变化的人脸特征,如人脸形状特征和眼、鼻、嘴部特征,通过训练支持向量机或神经网络等方法实现高准确度的人脸匹配。\n[0059] 值得指出的是,本发明的关键在于利用二代身份证中存储的低清人脸照片和性别、年龄等信息,对现场采集的高清人脸图像进行多重特征分析,包括对高清人脸图像的性别识别、年龄识别,以及高清人脸图像与身份证内低清人脸图像的比对,最后通过对匹配度的综合实现身份验证。对于具体的性别识别,年龄识别,以及人脸比对,则并不限于采用某一种方法。\n[0060] 在本发明的另一实施例中,如图2所示,可以通过从身份证中获取的性别信息提高年龄识别的精度。具体而言,可以通过不同性别的人脸训练数据,分别生成针对男性的年龄函数和针对女性的年龄函数。如果从身份证中获取的性别信息为男性,则采用男性的年龄函数,反之则采用女性的年龄函数。\n[0061] 进一步的,通过年龄识别,可以得到一个对高清人脸图像的年龄估计,从而得到一个估计的现场高清人脸图像与身份证人脸图像的年龄差距。基于该年龄差距,可以通过年龄变换,将低清人脸图像进行上采样(如2x2上采样),再利用基于人脸特征点的形状变化函数得到目标年龄的人脸形状,通过基于Gabor滤波从高清人脸图像中提取纹理特征,叠加后获取目标年龄的人脸重构图像,再将年龄变换后的低清人脸图像与下采样后的高清人脸图像进行人脸比对,获得人脸匹配度。\n[0062] 以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。
法律信息
- 2019-01-11
- 2016-06-08
实质审查的生效
IPC(主分类): G06K 9/00
专利申请号: 201510047655.9
申请日: 2015.01.29
- 2015-11-04
- 2015-06-03
引用专利(该专利引用了哪些专利)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 |
1
| |
2009-05-20
|
2007-02-27
| | |
2
| |
2007-09-19
|
2007-01-10
| | |
3
| |
2008-04-23
|
2006-03-23
| | |
被引用专利(该专利被哪些专利引用)
序号 | 公开(公告)号 | 公开(公告)日 | 申请日 | 专利名称 | 申请人 | 该专利没有被任何外部专利所引用! |