1.一种智慧实体状态推理方法,其特征在于,该方法具体包括以下步骤:
S1:区域划分:将边缘服务器覆盖的管理区域进行划分;通过将边缘服务器覆盖区域划分为地理跨度有限的网格,在挖掘关联智慧实体时挖掘范围为智慧实体所在网格内;
S2:关联模型构建:依据同一区域内智慧实体的历史状态,构建智慧实体状态的关联模型;
S3:状态推理估计:基于关联模型及已知智慧实体状态进行推理,得到状态未知的智慧实体的估计状态;
步骤S2具体包括:基于网格内智慧实体集的历史状态记录Datalocal,寻求与Datalocal匹配的最佳智慧实体网络结构,具体包括以下步骤:
S21:基于智慧实体间的信息素浓度构造智慧实体网络的初始无向图结构,识别状态关联性较强的智慧实体集合;
S22:通过智慧实体相对信息熵确定智慧实体之间连边的方式,从而完成对智慧实体网络即智慧实体关联模型的结构设计;
S23:采用最大似然估计法学习智慧实体网络即智慧实体状态关联模型的参数,然后以迭代学习的方式对智慧实体网络的参数进行学习,完成智慧实体状态关联模型的构建;
步骤S21具体包括:定义信息素浓度为智慧实体间的状态潜在关联强度;给定包含两个智慧实体状态随机变量X与Y的数据集S,则两个随机变量之间的特征矩阵为无限矩阵,定义为:
*
M(X,Y|S)i,j=I(X,Y,S,i,j)/log min(i,j)
*
其中,I (X,Y,S,i,j)=arg max I(X,Y,S|Gr,i,j)表示网格Gr所表示的随机变量X与Y之间的最大互信息,i、j分别表示网格的列和行;随机变量X与Y的信息素浓度MIC(X,Y|S)定义为:
0.6
其中,B(n)=n 为与智慧实体数量有关的常数,i×j<B(n)表示网格Gr大小的界限;
两个智慧实体之间的关联程度通过MIC值来衡量,若两智慧实体之间MIC值大于预先定义的连通阈值δ,则说明两智慧实体间的状态关联程度较高,在智慧实体网络中两智慧实体之间应有连边,反之,则无连边;由此,确定智慧实体网络的初始无向图结构;
步骤S22具体包括:定义智慧实体相对信息熵RE为两智慧实体间具有指向性的相对信息量;假设状态已知的智慧实体xj指向xi的连边的RE表示为:
其中,|xi|表示智慧实体xi所有的状态的数量; 表示智慧实体
xi的熵, 表示智慧实体xi的状态为m的概率; 为给定智
慧实体xj的状态的条件下,xi的条件熵, 为给定智慧实体xj的状态的条件下智慧实体xi的状态为m的概率;分别计算RE(xj→xi)与RE(xi→xj),若RE(xi→xj)≥RE(xj→xi),则智慧实体xi与xj的连边为从xi指向xj,则智慧实体xi为智慧实体xj的父节点智慧实体;若RE(xj→xi)≥RE(xi→xj),则反之;由此,确定智慧实体网络中有连边的智慧实体间的连边方向,从而最终确定智慧实体网络的结构;
步骤S23具体包括:首先,采用最大似然估计法学习智慧实体网络即智慧实体状态关联*
模型的参数,学习的目标为求解使得似然函数L(θ|S,G)取得最大值的参数集合θ,结合构建的智慧实体网络结构,得到:
其中,P(S|θ,G)表示实体概率分布θ和网络结构模型G已知的情况下,实体集合S的概率分布;n为网格内智慧实体的数量,|xi|为智慧实体xi的第i个父节点的智慧实体状态数量,qi为智慧实体的第i个父节点的智慧实体的数量,Nij为智慧实体的第i个父节点在给定其第j个父节点智慧实体时,i与j所有的状态组合的数量,Nijk为智慧实体的第i个父节点在给定其第j个父节点智慧实体的状态为k的条件下的状态数目;由此,得到智慧实体的第i个父节点在给定其第j个父节点智慧实体的状态为k的条件下,其状态的概率分布参数集合为:θijk=Nijk/Nij,i=1,2,…,n;j=1,2,…,qi,k=1,2,…,|xj|;
*
然后,采用最大似然估计法,通过迭代学习参数θ实现L(θ|S,G)数值的最大化,则L(θ|* *
S,G)取得最大值时的参数设置θ即为智慧实体网络中状态概率分布,即θ=arg maxθL(θ|S,G);至此,即完成对智慧实体网络的参数学习与智慧实体间状态关联模型的构建;
步骤S3具体包括以下步骤:
S31:边缘服务器通过智慧实体的周期性状态数据上报及用户发起的历史搜索记录,获得部分智慧实体的当前状态作为已知智慧实体状态;
S32:估计所有智慧实体的状态的条件概率分布,并依据已知智慧实体的状态推理计算未知智慧实体的状态。
2.根据权利要求1所述的一种智慧实体状态推理方法,其特征在于,所述步骤S32具体包括:依据证据节点集合E中各个智慧实体的状态,求解智慧实体网络中任意状态未知智慧实体Xi在取不同的状态 时的条件概率分布
对于任意状态未知智慧实体Xi:若Xi收到所有来自其父节点智慧实体的ρ信号,则由下式推得其接收的所有父节点智慧实体信号的效用值
其中,u为智慧实体Xi的所有父节点智慧实体集合,|u|为智慧实体Xi的所有父节点智慧实体数量,uk为父节点智慧实体集合u中的第k个父节点智慧实体, 为父节点智慧实体uk向智慧实体Xi传递的ρ信号效用值;
若Xi收到所有来自其子节点智慧实体的λ信号,由下式求解其接收的所有子节点智慧实体信号效用值
其中,Xh为智慧实体Xi的第h个子节点智慧实体,a为智慧实体Xi的所有子节点智慧实体的数量, 为子节点智慧实体Xh向智慧实体Xi传递的λ信号效用值;然后,对于Xi的每个子节点Xh,若接收到来自异于Xh的所有子节点的λ信号时,通过下式计算子节点智慧实体Xh向智慧实体Xi传递的ρ信号效用值 并将其作为ρ信号传递给Xi的子节点Xh;
智慧实体网络中ρ信号与λ信号传播完毕后,对于非证据节点Xi,可计算得到其状态为的概率 其中 为智慧实体网络的最佳近似状态概率分布
*
θ中,智慧实体Xi状态取值为 的概率;对 归一化处理后获取Xi的后验概率则智慧实体Xi的当前状态为其所有状态中概率最大的状态,即智慧实体Xi的当前状态从而得到未知智慧实体Xi的预测状态。
3.一种面向智慧实体的边缘处理方法,其特征在于,该方法具体包括以下步骤:
1)数据收集:智慧实体周期性观测其自身状态,并将状态数据上报至物联网网关,物联网网关汇聚其管理的智慧实体群的状态数据后,将数据传输至边缘服务器;
2)边缘推理:边缘服务器收集其覆盖范围内的智慧实体群的状态数据,采用权利要求1~2中任意一项所述的智慧实体状态推理方法,离线构建智慧实体状态关联模型,感知其所属智慧实体间的状态转换关联关系,并根据已知智慧实体的状态估计状态未知的智慧实体的状态,并将智慧实体的id及其状态/预测状态存储在边缘服务器本地;
3)发起搜索:用户通过客户端向边缘服务器发起针对本地智慧实体的搜寻请求;
4)搜索响应:边缘服务器响应客户端的搜索请求,依据搜索请求中的限定条件,并根据其本地存储的智慧实体的id及其状态/预测状态,初步确定符合用户搜寻需求的候选智慧实体集合;
5)匹配验证:边缘服务器在确定候选智慧实体集合后,将对候选智慧实体是否真正满足搜索需求进行验证;边缘服务器将候选智慧实体集合根据其所属管理的物联网网关,将对应的候选智慧实体id发送至其所属物联网网关,物联网网关访问智慧实体进行其当前状态的查验,并将候选智慧实体的当前状态返回给边缘服务器;
6)结果返回:边缘服务器在汇集所有相关物联网网关发送的智慧实体状态与验证结果后,在本地存储智慧实体及其状态,并将验证结果为符合搜索需求的智慧实体作为搜索结果返回给用户。
一种面向智慧实体的边缘处理方法\n技术领域\n[0001] 本发明属于物联网领域,涉及一种面向智慧实体的边缘处理方法。\n背景技术\n[0002] 在全球物联网产业发展的同时,物联网平台“碎片化”、物联网数据“孤岛化”等问题日渐凸显,激化了物联网应用挖掘深度严重不足与用户获取智慧实体信息的智能化需求之间的矛盾。例如,在智慧城市等应用中用户搜索现在附近人少、安静的咖啡厅,查询目前办公楼里未被占用且温度适宜的会议室等,搜寻的内容既包括智慧实体的静态属性信息(咖啡厅),也涵盖时空、主题与状态等信息。\n[0003] 搜索空间的急速扩展,搜索对象的爆炸性增长,搜索模式智能化需求的飞速提高,导致互联网搜索技术已无法满足要求。首先,互联网搜索技术主要面向数量有限的虚拟信息资源,而非海量的物理世界有形实体。其次,物理世界实体相较于虚拟信息资源具有时空动态特性。这都使得针对物联网实体的搜索在数量、形式、方法上均呈现出更繁复的特征。\n在此背景下,旨在实现对物理空间中遍布的功能各异、类型多样的智慧实体的信息资源进行有序组织与高效管理,以便用户可靠、快速、准确获取所需智慧实体信息的物联网搜索技术应运而生。\n[0004] 目前,针对物联网搜索技术的研究尚处于初级阶段。Wang H,Tan C C,Li Q在“Snoogle:a search engine for pervasive environment”【in IEEE Transactions on Parallel and Distributed Systems,pp.1188‑1202,2010】中提出了一种基于关键字的搜索系统—Snoogle,搜索系统能够将附着智慧实体信息的传感器根据地理位置分区域管理,当用户发出搜索请求后,通过关键字查询与之匹配的智慧实体,返回与查询约束相关的前k个智慧实体。然而,Snoogle在搜寻智慧实体时需遍历所有智慧实体对象,给智慧实体的搜寻过程带来了严重的通信开销。Truong C, K.在“Content‑based sensor search for the Web of Things”【in Global Communications Conference(GLOBECOM),2013】中设计并实现了适用于物联网定量状态实体的搜索系统–CSS。文中基于模糊逻辑理论,利用智慧实体的观测状态历史记录,构建了轻量级的智慧实体定量状态预测模型,估计智慧实体在搜索时刻的定量状态及其与搜索需求匹配的概率,并按照匹配概率降序返回搜索结果,以降低搜索过程的通信开销。为进一步降低面向定量状态实体的搜索过程的通信开销,发明人在论文“Low‑overhead and high‑precision prediction model for content‑based sensor search in the Internet of Things”【in IEEE Communications Letters,2016】中提出了低开销、高精度的面向定量状态智慧实体的搜索匹配方法,包括数据近似方法、多步预测方法与排序方法,按照智慧实体的预测状态进行搜寻匹配,在提高搜索效率的同时,降低搜索过程的通信与计算开销。然而,上述方法仅针对具有定量状态的智慧实体,如搜索当前温度为30℃的智慧实体。对于绝大多数用户而言,他们对传感器采集的智慧实体定量状态并不敏感,而更多地关注经过融合处理后的智慧实体定性状态,如天气暖和/寒冷(而非28℃/‑10℃)。目前尚缺乏面向具有定性状态的智慧实体的状态预测及高效搜寻方法。\n[0005] 智慧实体的定性状态转换受社会化活动、自然环境等多种复杂因素影响,使其观测状态极难遵循严格的周期转换模式,因而智慧实体的非周期定性状态推理方法亟需研究。已有的基于状态预测的智慧实体搜寻方法,大都将智慧实体状态推理预测过程采用类似云计算的集中处理方式,当处理海量状态时变智慧实体时,云端中心的计算与通信负载过大且搜寻的实时性较差。\n发明内容\n[0006] 有鉴于此,本发明的目的一在于提供一种智慧实体状态推理方法,通过构建智慧实体间状态的关联模型,挖掘智慧实体间状态转换的关联规则,进而根据已知智慧实体的状态及智慧实体间的状态关联规则,对未知的智慧实体状态进行推理估计,从而,准确估计状态转换具有非周期性的未知智慧实体的状态。解决了智慧实体的数量众多,且状态具有时空动态性、状态转化具有非周期性的问题。\n[0007] 本发明的目的二在于提供一种面向智慧实体的边缘处理方法,设计架构中各个模块的功能与交互流程,依据推理的智慧实体状态,在边缘侧进行智慧实体的高效搜寻,从而改变原有的云端集中搜寻的模式,达到降低智慧实体搜寻过程的通信开销,并提高智慧实体搜寻的实时性的目的。\n[0008] 为达到上述目的一,本发明提供如下技术方案:\n[0009] 一种智慧实体状态推理方法,通过构建智慧实体间状态的关联模型,挖掘智慧实体间状态转换的关联规则,进而根据已知智慧实体的状态及智慧实体间的状态关联规则,对未知的智慧实体状态进行推理估计,从而,准确估计状态转换具有非周期性的未知智慧实体的状态。该方法具体包括以下步骤:\n[0010] S1:区域划分:将边缘服务器覆盖的管理区域进行划分;\n[0011] S2:关联模型构建:依据同一区域内智慧实体的历史状态,构建智慧实体状态的关联模型;\n[0012] S3:状态推理估计:基于关联模型及已知智慧实体状态进行推理,得到状态未知的智慧实体的估计状态。\n[0013] 进一步,所述步骤S1具体包括:通过将边缘服务器覆盖区域划分为地理跨度有限的网格,在挖掘关联智慧实体时挖掘范围仅限智慧实体所在网格,以大幅降低搜索空间。\n[0014] 进一步,所述步骤S2具体包括:基于网格内智慧实体集的历史状态记录Datalocal,寻求与Datalocal匹配的最佳智慧实体网络结构,具体包括以下步骤:\n[0015] S21:基于智慧实体间的信息素浓度构造智慧实体网络的初始无向图结构,识别状态关联性较强的智慧实体集合;\n[0016] S22:通过智慧实体相对信息熵确定智慧实体之间连边的方式,从而完成对智慧实体网络即智慧实体关联模型的结构设计;\n[0017] S23:采用最大似然估计法学习智慧实体网络即智慧实体状态关联模型的参数,然后以迭代学习的方式对智慧实体网络的参数进行学习,完成智慧实体状态关联模型的构建。\n[0018] 进一步,所述步骤S21具体包括:定义信息素浓度为智慧实体间的状态潜在关联强度;给定包含两个智慧实体状态随机变量X与Y的数据集S,则两个随机变量之间的特征矩阵为无限矩阵,定义为:\n[0019] M(X,YS)i,j=I*(X,Y,S,i,j)/logmin(i,j)\n[0020] 其中,I*(X,Y,S,i,j)=argmaxI(X,Y,S|Gr,i,j)表示网格Gr所表示的随机变量X与Y之间的最大互信息,i、j分别表示网格的列和行;随机变量X与Y的信息素浓度MIC(X,Y|S)定义为:\n[0021]\n[0022] 其中,B(n)=n0.6为与智慧实体数量有关的常数,i×j<B(n)表示网格Gr大小的界限;\n[0023] 两个智慧实体之间的关联程度通过MIC值来衡量,若两智慧实体之间MIC值大于预先定义的连通阈值δ,则说明两智慧实体间的状态关联程度较高,在智慧实体网络中两智慧实体之间应有连边,反之,则无连边;由此,即可确定智慧实体网络的初始无向图结构。\n[0024] 进一步,所述步骤S22具体包括:通过确定的智慧实体网络的初始无向图结构,可确定存在连边的智慧实体对,然而连边的方向尚无法确定,因而,定义智慧实体相对信息熵RE确定连边的方向。定义智慧实体相对信息熵RE为两智慧实体间具有指向性的相对信息量;假设状态已知的智慧实体xj指向xi的连边的RE表示为:\n[0025]\n[0026] 其中,|xi|表示智慧实体xi所有的状态的数量; 表示智慧\n实体xi的熵, 表示智慧实体xi的状态为m的概率; 为给\n定智慧实体xj的状态的条件下,xi的条件熵, 为给定智慧实体xj的状态的条件下智慧实体xi的状态为m的概率;分别计算RE(xj→xi)与RE(xi→xj),若RE(xi→xj)≥RE(xj→xi),则智慧实体xi与xj的连边为从xi指向xj,则智慧实体xi为智慧实体xj的父节点智慧实体;若RE(xj→xi)≥RE(xi→xj),则反之;由此,确定智慧实体网络中有连边的智慧实体间的连边方向,从而最终确定智慧实体网络的结构。\n[0027] 进一步,所述步骤S23具体包括:首先,采用最大似然估计法学习智慧实体网络即智慧实体状态关联模型的参数,学习的目标为求解使得似然函数L(θ|S,G)取得最大值的参*\n数集合θ,结合构建的智慧实体网络结构,得到:\n[0028]\n[0029] 其中,P(S|θ,G)表示实体概率分布θ和网络结构模型G已知的情况下,实体集合S的概率分布;n为网格内智慧实体的数量,|xi|为智慧实体xi的第i个父节点的智慧实体状态数量,qi为智慧实体的第i个父节点的智慧实体的数量,Nij为智慧实体的第i个父节点在给定其第j个父节点智慧实体时,i与j所有的状态组合的数量,Nijk为智慧实体的第i个父节点在给定其第j个父节点智慧实体的状态为k的条件下的状态数目;由此,得到智慧实体的第i个父节点在给定其第j个父节点智慧实体的状态为k的条件下,其状态的概率分布参数集合为:θijk=Nijk/Nij,i=1,2,…,n;j=1,2,,qi,k=1,2,…,|xj|;\n[0030] 然后,采用最大似然估计法,通过迭代学习参数θ*实现L(θ|S,G)数值的最大化,则* *\nL(θ|S,G)取得最大值时的参数设置θ即为智慧实体网络中状态概率分布,即θ=argmaxθL(θ|S,G);至此,即完成对智慧实体网络的参数学习与智慧实体间状态关联模型的构建。\n[0031] 进一步,所述步骤S3具体包括以下步骤:\n[0032] S31:边缘服务器通过智慧实体的周期性状态数据上报及用户发起的历史搜索记录,获得部分智慧实体的当前状态作为已知智慧实体状态;\n[0033] S32:估计所有智慧实体的状态的条件概率分布,并依据已知智慧实体的状态推理计算未知智慧实体的状态。\n[0034] 进一步,所述步骤S32具体包括:依据证据节点集合E(已知状态的智慧实体)中各个智慧实体的状态,求解智慧实体网络中任意状态未知智慧实体Xi(非证据节点)在取不同的状态 时的条件概率分布 各个连通的智慧实体之间通过传递λ信号与ρ信号来实现条件概率的推导,如图2所示。\n[0035] 对于任意状态未知智慧实体Xi:若Xi收到所有来自其父节点智慧实体的ρ信号,则由下式推得其接收的所有父节点智慧实体信号的效用值\n[0036]\n[0037] 其中,u为智慧实体Xi的所有父节点智慧实体集合,u为智慧实体Xi的所有父节点智慧实体数量,uk为父节点智慧实体集合u中的第k个父节点智慧实体, 为父节点智慧实体uk向智慧实体Xi传递的ρ信号效用值;\n[0038] 若Xi收到所有来自其子节点智慧实体的λ信号,由下式求解其接收的所有子节点智慧实体信号效用值\n[0039]\n[0040] 其中,Xh为智慧实体Xi的第h个子节点智慧实体,a为智慧实体Xi的所有子节点智慧实体的数量, 为子节点智慧实体Xh向智慧实体Xi传递的λ信号效用值;然后,对于Xi的每个子节点Xh,若接收到来自异于Xh的所有子节点的λ信号时,通过下式计算子节点智慧实体Xh向智慧实体Xi传递的ρ信号效用值 并将其作为ρ信号传递给Xi的子节点Xh;\n[0041]\n[0042] 智慧实体网络中ρ信号与λ信号传播完毕后,对于非证据节点Xi,可计算得到其状态为 的概率 其中 为智慧实体网络的最佳近似状态概\n*\n率分布θ中,智慧实体Xi状态取值为 的概率;对 归一化处理后获取Xi的后验概率则智慧实体Xi的当前状态为其所有状态中概率最大的状态,即智慧实体Xi的当前状态 从而得到未知智慧实体Xi的预测状态。\n[0043] 为达到上述目的二,本发明提供如下技术方案:\n[0044] 一种面向智慧实体的边缘处理方法,具体包括以下步骤:\n[0045] 1)数据收集:智慧实体周期性观测其自身状态,并将状态数据上报至物联网网关,物联网网关汇聚其管理的智慧实体群的状态数据后,将数据传输至边缘服务器;\n[0046] 2)边缘推理:边缘服务器收集其覆盖范围内的智慧实体群的状态数据,采用权利要求1~8中任意一项所述的智慧实体状态推理方法,离线构建智慧实体状态关联模型,感知其所属智慧实体间的状态转换关联关系,并根据已知智慧实体的状态估计状态未知的智慧实体的状态,并将智慧实体的id及其状态/预测状态存储在边缘服务器本地;\n[0047] 3)发起搜索:用户通过客户端向边缘服务器发起针对本地智慧实体的搜寻请求;\n[0048] 4)搜索响应:边缘服务器响应客户端的搜索请求,依据搜索请求中的限定条件,并根据其本地存储的智慧实体的id及其状态/预测状态,初步确定符合用户搜寻需求的候选智慧实体集合;\n[0049] 5)匹配验证:边缘服务器在确定候选智慧实体集合后,将对候选智慧实体是否真正满足搜索需求进行验证;边缘服务器将候选智慧实体集合根据其所属管理的物联网网关,将对应的候选智慧实体id发送至其所属物联网网关,物联网网关访问智慧实体进行其当前状态的查验,并将候选智慧实体的当前状态返回给边缘服务器;\n[0050] 6)结果返回:边缘服务器在汇集所有相关物联网网关发送的智慧实体状态与验证结果后,在本地存储智慧实体及其状态,并将验证结果为符合搜索需求的智慧实体作为搜索结果返回给用户。\n[0051] 本发明的有益效果在于:本发明提出的智慧实体状态推理方法,通过挖掘智慧实体间的状态关联关系来推理智慧实体的状态,可适用于状态非周期性转换的智慧实体,具有较强的普适性与泛化能力,并且所提智慧实体状态推理方法可部署于边缘服务器,可有效降低云服务器的计算与通信开销,并提高智慧实体搜索的实时性。本发明提出的智慧实体边缘处理方法,通过首先对智慧实体的状态进行推理估计,然后依据智慧实体的预测状态进行智慧实体的搜索,可大幅降低智慧实体的搜索空间,从而有效降低搜索过程的通信开销。\n[0052] 本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。\n附图说明\n[0053] 为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:\n[0054] 图1为本发明所述的面向智慧实体的边缘处理方法系统架构图;\n[0055] 图2为本发明的面向智慧实体的状态推理方法原理图;\n[0056] 图3为本发明实施例提供的一种面向智慧实体的边缘处理方法流程图。\n具体实施方式\n[0057] 以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。\n[0058] 请参阅图1~图3,图1所示的是一种面向智慧实体的边缘处理方法系统架构,具体包含以下系统组成模块:\n[0059] 客户端:客户端为用户发起搜索请求的入口,用户通过客户端向边缘服务器提交搜索请求。搜索请求形式为Q(entity)={time,location,type,state},其中Q(entity)为要搜索的智慧实体,{time,location,type,state}为搜索目标要满足的约束条件,time为用户发起智慧实体搜索的时间,本发明仅针对当前时刻智慧实体的搜索;location为用户要搜索的智慧实体的位置(如信息科技大厦等具体位置);type为要搜索的智慧实体的功能(如温度、湿度等);state为用户感兴趣的智慧实体的状态(如未被占用的停车位)。例如,用户搜索当前时刻(time)在附近(location)温度(type)适宜(state)的室内锻炼场所(Q(entity))。\n[0060] 智慧实体:智慧实体为附着传感器,具备有限的感知与通信功能的智慧实体,如配备温度传感器的办公室等。智慧实体拥有一个全网唯一的身份标识(id),其周期性感知其自身的状态并上报状态数据至物联网网关,也负责响应网关下发的状态查询指令观测其自身状态。由于目前大多数传感器为无源供电,为延长使用寿命,智慧实体上报状态数据的周期在无网关明确查询指令的情况下,一般为固定周期上报。\n[0061] 物联网网关:物联网网关为具备一定通信、存储与计算能力的设备。负责其覆盖范围内的智慧实体群的网络管理,一般一个小型的智慧实体群配备一个物联网网关设备;汇聚其管辖的智慧实体群上报的状态数据发送至边缘服务器;响应边缘服务器下发的智慧实体状态验证指令。\n[0062] 边缘服务器:边缘服务器为具备较强通信、存储与计算能力的设备。边缘服务器之间以地理位置进行划分,每个区域均部署有边缘服务器,其负责管理该区域内的物联网网关设备;负责采用本发明所提状态推理方法,推理估计智慧实体的状态;响应该区域用户由客户端发起的针对该区域智慧实体的搜索请求。\n[0063] 云服务器:云服务器为具备强大通信、存储与计算能力的设备。其负责全部边缘服务器的注册与管理。\n[0064] 图2所示的是一种智慧实体状态推理方法流程,包括以下步骤:\n[0065] 1)区域划分,将边缘服务器覆盖的管理区域进行划分。具体包括:假设边缘服务器的管辖范围为边长为L的方形区域,则将边缘服务器覆盖区域划分为边长为l的网格,在采用所提智慧实体状态推理方法进行关联智慧实体挖掘时,计算范围仅限智慧实体所在网格内的智慧实体集合,以大幅减少搜索空间,降低计算开销。\n[0066] 2)关联模型构建,依据同一区域内智慧实体的历史状态,构建智慧实体状态的关联模型。具体包括:构建智慧实体状态关联规则模型,将之抽象为二元组ER=(G,θ),其中G=(V,E)为网络结构模型,表示智慧实体间的关联关系,V为智慧实体集合,E为智慧实体间的有向边集,θ为实体状态的概率分布情况。\n[0067] 智慧实体集V={x1,x2,…,xn}的联合概率分布定义为:\n[0068]\n[0069] 其中,π(xi)为智慧实体xi在G中的父节点智慧实体集合,独立于除父节点智慧实体集合之外的所有非后代节点智慧实体,n为智慧实体的数量。构建智慧实体间状态关联模型的核心为基于网格内智慧实体集的状态历史记录Datalocal,寻求可与Datalocal匹配的最佳网络结构。\n[0070] 具体步骤如下:\n[0071] (1)基于智慧实体间的信息素浓度构造智慧实体网络的初始无向图结构,识别状态关联性较强的智慧实体集合。信息素浓度定义为智慧实体间的状态潜在关联强度。给定包含两个智慧实体状态随机变量X与Y的数据集S,则两个随机变量之间的特征矩阵为无限矩阵,定义为\n[0072] M(X,Y|S)i,j=I*(X,Y,S,i,j)/logmin(i,j)\n[0073] 其中,I*(X,Y,S,i,j)=argmaxI(X,Y,S|Gr,i,j)表示网格Gr所表示的随机变量X与Y之间的最大互信息,i表示网格的列,j表示网格的行。随机变量X与Y的信息素浓度MIC(X,YS)定义为\n[0074]\n[0075] 其中,B(n)=n0.6为与智慧实体数量有关的常数,i×j<B(n)表示网格Gr大小的界限。\n[0076] 两个智慧实体之间的关联程度可通过MIC值来衡量,若两智慧实体之间MIC值大于预先定义的连通阈值δ,则说明两智慧实体间的状态关联程度较高,在智慧实体网络中两智慧实体之间应有连边,反之,则无连边。由此,即可确定智慧实体网络的初始无向图结构。\n[0077] (2)通过智慧实体相对信息熵即可确定智慧实体之间连边的方式,从而完成智慧实体网络的结构设计。通过前述智慧实体网络初始结构图,可确定存在连边的智慧实体对,然而连边的方向尚无法确定,因而,进一步定义智慧实体相对信息熵(RE)确定连边的方向。\n智慧实体相对信息熵定义为两智慧实体间具有指向性的相对信息量。如状态已知的智慧实体xj指向xi的连边的RE可表示为:\n[0078]\n[0079] 其中,|xi|表示智慧实体xi所有的状态的数量; 表示智慧\n实体xi的熵, 表示智慧实体xi的状态为m的概率; 为给\n定智慧实体xj的状态的条件下,xi的条件熵, 为给定智慧实体xj的状态的条件下智慧实体xi的状态为m的概率。分别计算RE(xj→xi)与RE(xi→xj),若RE(xi→xj)≥RE(xj→xi),则智慧实体xi与xj的连边为从xi指向xj,则智慧实体xi为智慧实体xj的父节点智慧实体;若RE(xj→xi)≥RE(xi→xj),则反之。由此,可确定智慧实体网络中有连边的智慧实体间的连边方向,从而最终确定智慧实体网络的结构。\n[0080] (3)采用最大似然估计法学习智慧实体网络即智慧实体状态关联模型的参数,从而以迭代学习的方式对智慧实体网络的参数进行学习,完成智慧实体状态间关联模型的构建与关联规则的挖掘。为对智慧实体网络中各个智慧实体的状态概率分布进行计算,需对智慧实体网络的参数进行学习。本发明实施例采用最大似然估计法学习智慧实体网络的参*\n数。学习的目标为求解使得似然函数L(θ|S,G)取得最大值的参数集合θ,结合构建的智慧实体网络结构,可得到:\n[0081]\n[0082] 其中,P(S|θ,G)表示实体概率分布θ和网络结构模型G已知的情况下,实体集合S的概率分布;n为网格内智慧实体的数量,|xi|为智慧实体xi的第i个父节点的智慧实体状态数量,qi为智慧实体的第i个父节点的智慧实体的数量,Nij为智慧实体的第i个父节点在给定其第j个父节点智慧实体时,i与j所有的状态组合的数量,Nijk为智慧实体的第i个父节点在给定其第j个父节点智慧实体的状态为k的条件下的状态数目。由此,可得智慧实体第i个父节点在给定其第j个父节点智慧实体的状态为k的条件下,其状态的概率分布参数集合θijk=Nijk/Nij(i=1,2,…,n;j=1,2,…,qi,k=1,2,…,|xj|)。至此,可采用最大似然估计法,* *\n通过迭代学习参数θ实现L(θ|S,G)数值的最大化,则L(θ|S,G)取得最大值时的参数设置θ*\n即为智慧实体网络中状态概率分布,即θ=argmaxθL(θ|S,G)。至此,即完成对智慧实体网络的参数学习与智慧实体间状态关联模型的构建。\n[0083] 3)状态推理估计,基于关联模型及已知智慧实体状态进行推理,得到状态未知的智慧实体的估计状态。具体包括:基于步骤2)构建的智慧实体网络,结合已知智慧实体状态,实现对未知智慧实体状态的推理估计,具体步骤如下:\n[0084] (1)部分智慧实体状态的获取。由前述可知,物联网网关按照既定的上报周期向边缘服务器报告其管辖智慧实体的状态数据,则边缘服务器存储了所有智慧实体上一周期上报时刻的状态,在初始时刻(即未收到用户搜索请求,且在接收下一周期上报时刻智慧实体状态数据之前),所有智慧实体的当前状态均假定为其上一周期时刻的状态。由前述搜寻方法的描述可知,当用户发起搜索请求后,边缘服务器通过物联网网关发起候选智慧实体的验证指令,将收到其所确定的候选智慧实体的实际状态数据,则将此实际状态数据更新为候选智慧实体的当前已知状态进行本地存储。\n[0085] (2)估计所有智慧实体的状态的条件概率分布,并依据已知智慧实体的状态推理计算未知智慧实体的状态。基于前述完成构建的智慧实体网络,本发明拟进一步实现对未知状态的智慧实体的推理估计。依据证据节点集合E(已知状态的智慧实体)中各个智慧实体的状态,求解智慧实体网络中任意状态未知智慧实体Xi在取不同的状态 时,该智慧实体的条件概率分布 各个连通的智慧实体之间通过传递λ信号与ρ信号来实现条件概率的推导,如图3所示。\n[0086] 对于每个非证据节点(状态未知的智慧实体)Xi:\n[0087] 若Xi收到所有来自其父节点智慧实体的ρ信号,则由下式可推得其接收的所有父节点智慧实体信号的效用值\n[0088]\n[0089] 其中,u为智慧实体Xi的所有父节点智慧实体集合,u为智慧实体Xi的所有父节点智慧实体数量,uk为父节点智慧实体集合u中的第k个父节点智慧实体, 为父节点智慧实体uk向智慧实体Xi传递的ρ信号效用值。\n[0090] 若Xi收到所有来自其子节点智慧实体的λ信号,则可由下式求解其接收的所有子节点智慧实体信号效用值\n[0091]\n[0092] 其中,Xh为智慧实体Xi的第h个子节点智慧实体,a为智慧实体Xi的所有子节点智慧实体的数量, 为子节点智慧实体Xh向智慧实体Xi传递的λ信号效用值。之后,对于Xi的每个子节点Xh,若接收到来自异于Xh的所有子节点的λ信号时,通过下式计算子节点智慧实体Xh向智慧实体Xi传递的ρ信号效用值 并将其作为ρ信号传递给Xi的子节点Xh。\n[0093]\n[0094] 智慧实体网络中ρ信号与λ信号传播完毕后,对于非证据节点Xi,可计算得到其状态为 的概率 其中 为前述所求智慧实体网络的最佳\n*\n近似状态概率分布θ中,智慧实体Xi状态取值为 的概率。对 归一化处理后可获取Xi的后验概率 则智慧实体Xi的当前状态为其所有状态中概率最大的状态,即智慧实体Xi的当前状态 从而可得到未知智慧实体Xi的预测状态。\n[0095] 如附图2所示,所提智慧实体边缘搜寻方法优选地具体包含如下步骤:\n[0096] 1)数据收集。假设智慧实体关联的传感器周期观测其关联智慧实体的状态,智慧实体也按照同样的周期同步上报其状态数据至物联网网关,物联网网关汇聚其管理的智慧实体群的状态数据后,也采用同样的周期将数据传输至其所属的边缘服务器。\n[0097] 2)边缘推理。边缘服务器收集其覆盖范围内的智慧实体群的状态数据,采用前述智慧实体状态推理方法,离线构建智慧实体状态关联模型,感知其所属智慧实体间的状态转换关联关系,并根据已知智慧实体的状态估计状态未知的智慧实体的状态,并将智慧实体的id及其状态/预测状态存储在边缘服务器本地。\n[0098] 3)发起搜索。用户通过客户端向本地边缘服务器发起针对本地智慧实体的搜寻请求Q(entity)={time,location,type,state}。\n[0099] 4)搜索响应。边缘服务器响应客户端的搜索请求Q(entity),依据搜索请求中的限定条件{time,location,type,state},并根据其本地存储的智慧实体的id及其状态/预测状态,初步确定符合用户搜寻需求的候选智慧实体集合\n[0100] 5)匹配验证。边缘服务器在确定候选智慧实体集合 后,将对 中的所有候选智慧实体的真实状态进行访问验证。边缘服务器依据搜索的限定条件{time,location,type,state}与各个候选智慧实体所属网关进行通信,将待验证智慧实体列表\n发送至其所属物联网网关,其中l为需由物联网网关访问验证的智慧实体的数量。之后,物联网网关将验证的候选智慧实体的当前状态列表C={(id1,state1),(id2,state2),…,(idl,statel)}返回给边缘服务器。\n[0101] 6)结果返回。边缘服务器汇集所有相关物联网网关发送的候选智慧实体当前状态列表{C1,C2,…,CN}(其中N为物联网网关的数量),将候选智慧实体的id及其实际状态存储在本地,并从中选出符合约束条件state的智慧实体集合 将之作为搜索结果返回给用户。\n[0102] 最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。